期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Numerical Analysis of Steady Smoldering of Biomass Rods
1
作者 Zhao Wentao Yu Guangxin +3 位作者 Zhang Yi Wang Youtang Zhou Dan He Fang 《燃烧科学与技术》 CAS CSCD 北大核心 2024年第5期507-519,共13页
Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensi... Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel. 展开更多
关键词 steady smoldering biomass rod numerical analysis 2D steady model sensitivity analysis
在线阅读 下载PDF
Numerical analysis and field monitoring tests on shallow tunnels under weak surrounding rock 被引量:2
2
作者 刘建华 刘晓明 +1 位作者 张永杰 肖庭 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4056-4063,共8页
The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring test... The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring tests and numerical analysis were done. The mechanical characteristics of shallow tunnels under weak surrounding rock and the stress-strain rule of surrounding rock and support were analyzed. The numerical analysis results show that the settlement caused by upper bench excavating accounts for 44% of the total settlement, and the settlement caused by tunnel upper bench supporting accounts for 56% of the total settlement. The maximum axial force of shotcrete lining is 177.2 k N, which locates in hance under the secondary lining. The maximum moment of shotcrete lining is 5.08 k N·m, which locates in the arch foot. The stress curve of steel arch has three obvious stages during the tunnel construction. The maximum axial force of steel arch is 297.4 k N, which locates in tunnel vault. The axial forces of steel arch are respectively 23.5 k N and-21.8 k N, which is influenced by eccentric compression of shallow tunnel and locates in hance. The results show that there is larger earth pressure in tunnel vault which is most unfavorable position of steel arch. Therefore, the advance support should be strengthened in tunnel vault during construction process. 展开更多
关键词 tunnel engineering shallow tunnel weak surrounding rock numerical analysis field monitoring tests
在线阅读 下载PDF
Numerical analysis of temperature rise within 70MPa composite hydrogen vehicle cylinder during fast refueling 被引量:1
3
作者 王亮 郑传祥 +2 位作者 李蓉 陈冰冰 魏宗新 《Journal of Central South University》 SCIE EI CAS 2014年第7期2772-2778,共7页
The numerical simulation model for predicting fast filling process of 70 MPa type Ⅲ(with metal liner) hydrogen vehicle cylinder was presented,which has considered turbulence,real gas effect and solid heat transfer is... The numerical simulation model for predicting fast filling process of 70 MPa type Ⅲ(with metal liner) hydrogen vehicle cylinder was presented,which has considered turbulence,real gas effect and solid heat transfer issues.Through the numerical analysis method,the temperature distributions of the gas within the solid walls were revealed; adiabatic filling was studied to evaluate the heat dissipation during the filling; the influences of various filling conditions on temperature rise were analyzed in detail.Finally,cold filling was proposed to evaluate the effect on temperature rise and SoC(state of charge) within the cylinder.The hydrogen pre-cooling was proved to be an effective solution to reduce maximum temperature and acquire higher SoC during the filling process. 展开更多
关键词 fast filling numerical analysis temperature rise hydrogen vehicle cylinder state of charge
在线阅读 下载PDF
Numerical analysis on seismic behavior of railway earth embankment: A case study
4
作者 林宇亮 石峰 +2 位作者 杨啸 杨果林 李丽民 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期906-918,共13页
A numerical case study on the seismic behavior of embankment was carried out based on a prototype of earth embankment in Yun-Gui Railway (from Kunming City to Nanning City) in southwest of China. A full-scale model ... A numerical case study on the seismic behavior of embankment was carried out based on a prototype of earth embankment in Yun-Gui Railway (from Kunming City to Nanning City) in southwest of China. A full-scale model of earth embankment was established by means of numerical simulation with FLAC3D code. The numerical results were verified by shaking table test. The seismic behaviors of earth embankment were studied, including the horizontal acceleration response, the vertical acceleration response, the dynamic displacement response, and the block state of earth embankment. Results show that the acceleration magnification near the embankment slope is larger than that in internal earth embankment body. With the increase of input peak acceleration, the horizontal acceleration magnification presents a decreasing trend. The horizontal acceleration response at the top of embankment is more sensitive to the intensity of ground motion than that at the bottom of cmbankment. The embankment presents an obvious nonlinear-plastic characteristic when the input horizontal peak acceleration is larger than 0.3 g. The maximum residual deformation occurs in the middle of embankment slope surface instead of at the top of embankment. The upper part of embankment experiences tension failure without shear failure, and area at mainly presents shear failure under the earthquake loading. surface of earth embankment. the bottom of embankment around the symmetry-axis of embankment The tension failure and shear failure repeatedly occur along the slope 展开更多
关键词 earth embankment numerical analysis seismic behavior EARTHQUAKE
在线阅读 下载PDF
The Numerical Analysis of Strain Behavior at Solder Joint and Interface of Flip Chip Package
5
作者 S C Chen Y C Lin 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期186-188,共3页
The flip chip package is a kind of advanced electri ca l packages. Due to the requirement of miniaturization, lower weight, higher dens ity and higher performance in the advanced electric package, it is expected that ... The flip chip package is a kind of advanced electri ca l packages. Due to the requirement of miniaturization, lower weight, higher dens ity and higher performance in the advanced electric package, it is expected that flip chip package will soon be a mainstream technology. The silicon chip is dir ectly connected to printing circuit substrate by SnPb solder joints. Also, the u nderfill, a composite of polymer and silica particles, is filled in the gap betw een the chip and substrate around the solder joints to improve the reliabili ty of solder joints. When flip chip package specimen is tested with thermal cycl ing, the cyclic stress/strain response that exists at the underfill interfaces and solder joints may result in interfacial crack initiation and propagation. Therefore, the chip cracking and the interfacial delamination between underfill and chip corner have been investigated in many studies. Also, most researches h ave focused on the effect of fatigue and creep properties of solder joint induce d by the plastic strain alternation and accumulation. The nuderfill must have lo w viscosity in the liquid state and good adhesion to the interface after solidif ying. Also, the mechanical behavior of such epoxy material has much dependen ce on temperature in its glass transition temperature range that is usually cove red by the temperature range of thermal cycling test. Therefore, the materia l behavior of underfill exists a significant non-linearity and the assumption o f linear elastic can lack for accuracy in numerical analysis. Through numerical analysis, this study had some comparisons about the effect of linear and non -linear properties of underfill on strain behaviors around the interface of fli p chip assembly. Especially, the deformation tendency inside solder bumps could be predicted. Also, it is worthily mentioned that we have pointed out which comp onent of plastic strain, thus, either normal or shear, has dominant influence to the fatigue and creep of solder bump, which have not brought up before. About the numerical analysis to the thermal plastic strain occurs in flip chip i nterconnection during thermal cycling test, a commercial finite element software , namely, ANSYS, was employed to simulate the thermal cycling test obeyed by MIL-STD-883C. The temperatures of thermal cycling ranged from -55 ℃ to 125 ℃ with ramp rate of 36 ℃/min and a dwell time of 25 min at peak temperature. T he schematic drawing of diagonal cross-section of flip chip package composed of FR-4 substrate, silicon chip, underfill and solder bump was shown as Fig.1. Th e numerical model was two-dimensional (2-D) with plane strain assumption and o nly one half of the cross-section was modeled due to geometry symmetry. The dim ensions and boundary conditions of numerical model were shown in Fig.2. The symm etric boundary conditions were applied along the left edge of the model, and the left bottom corner was additional constrained in vertical direction to prevent body motion. The finite element meshes of overall and local numerical model was shown as Fig.3. In this study, two cases of material model were used to describe the material behavior of the underfill: the case1 was linear elastic model that assumed Young’s Modulus (E) and thermal expansion coefficient (CTE) were consta nt during thermal cycling; the case2 was MKIN model (in ANSYS) that had nonlinea r temperature-dependent stress-strain relationship and temperature-dependent CTE. The material model applied to the solder bump was ANAND model (in ANSYS) th at described time-dependent plasticity phenomenon of viscoplastic material. Bot h the FR-4 substrate and silicon chip were assumed as temperature-independent elastic material; moreover, FR-4 substrate is orthotropic while silicon chip is isotropic. From the comparison between numerical results of linear and nonlinear material a ssumption of underfill, (i.e. case1 and case2), the quantities of plastic strain around the interconnection from case1 are higher than that in case2. Thus, the linear 展开更多
关键词 The numerical analysis of Strain Behavior at Solder Joint and Interface of Flip Chip Package
在线阅读 下载PDF
A new theory for determining large deformation area of roof at intersection and verification analysis
6
作者 WU Yi-yi GAO Yu-bing +2 位作者 MA Xiang ZHANG Xing-xing HE Man-chao 《Journal of Central South University》 2025年第2期656-677,共22页
The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying t... The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement. 展开更多
关键词 roadway intersection roof deformation equivalent span theory triangular plate structure numerical analysis stress partial tensor
在线阅读 下载PDF
Numerical study on cavitation in a globe control valve with different numbers of anti-cavitation trims 被引量:9
7
作者 Hamidreza YAGHOUBI Seyed Amir Hossein MADANI Mansour ALIZADEH 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2677-2687,共11页
Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different type... Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different types of trims have been investigated.In this study,by numerical analysis,a globe control valve was investigated by employing four different cases(without trim,with one trim,with two and three trims)and the impact of the number of these trims on the intensity,formation region and the initiation point of cavitation was analyzed.It was found that the addition of one stage or two stages of trims reduces the intensity and delays the onset of cavitation,relative to the valve without trim.However,no significant differences in terms of intensity and initiation point of cavitation were observed in the cases where two or three trims were used.Therefore,due to the high cost of producing the trims,and the severe drop in flow coefficient,it is not economically and technically justified to increase the number of trims to more than three. 展开更多
关键词 numerical analysis anti-cavitation trim globe control valve
在线阅读 下载PDF
Parametric analysis on buffeting performance of a long-span high-speed railway suspension bridge 被引量:5
8
作者 ZHAO Kai-yong WANG Hao +2 位作者 TAO Tian-you GAO Hui WU Tong 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2574-2588,共15页
The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantl... The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges. 展开更多
关键词 high-speed railway suspension bridge buffeting performance numerical analysis parametric analysis wind field simulation
在线阅读 下载PDF
Coupled hydro-mechanical analysis of slope under rainfall using modified elasto-plastic model for unsaturated soils 被引量:4
9
作者 王柳江 刘斯宏 +1 位作者 傅中志 李卓 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1892-1900,共9页
Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression fo... Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides. 展开更多
关键词 unsaturated soils modified basic Barcelona model(BBM) numerical analysis rainfall infiltration model slope
在线阅读 下载PDF
Dynamic parameters of multi-cabin protective structure subjected to low-impact load e Numerical and experimental investigations 被引量:2
10
作者 Jing-xin Ma Ru-wen Wang +1 位作者 Sheng-zhuo Lu Wei-dong Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第5期988-1000,共13页
The dynamic response of a multi-cabin protective structure subjected to impact load directly affects the protective performance of materials;thus,studying the dynamic response and communication law of wave effect of t... The dynamic response of a multi-cabin protective structure subjected to impact load directly affects the protective performance of materials;thus,studying the dynamic response and communication law of wave effect of the load plays an important role in the prediction of protective performance.In this study,the protection experiments of box-structure under air-and/or water-medium are conducted,the dynamic response of the structure subjected to low-impact load is analyzed,and the corresponding numerical simulations are analyzed using the theory of finite element method(FEM).Combined with experimental and FEM simulations,the shock strain distribution,acceleration attenuation,and signal energy in defensive materials are determined.Based on the results,the metal structure exhibits good absorption characteristics for shock vibration.Using the experimental data,we also show that the attenuation of shock wave in water medium should be significantly better than that in air medium,and the protective structure should be designed for a combination of water and air mediums.Meanwhile,the numerical simulation can provide a quantitative analysis process for dynamic analysis of defensive materials. 展开更多
关键词 Multi-medium Defensive materials Low-impact load Experimental investigation numerical analysis
在线阅读 下载PDF
Analytical and numerical solutions for shear mechanical behaviors of structural plane
11
作者 何忠明 熊喆怡 +1 位作者 胡庆国 杨明 《Journal of Central South University》 SCIE EI CAS 2014年第7期2944-2949,共6页
The original descriptive model of shear stress and shear displacement only reflects the stress deformation characteristics of plastic structural plane.The index model was revised and piecewise index model was built to... The original descriptive model of shear stress and shear displacement only reflects the stress deformation characteristics of plastic structural plane.The index model was revised and piecewise index model was built to describe the stress deformation characteristics of plastic structural plane and brittle structural plane.The relation of stress and strain to the failure mode of structural plane considering the effect of its shape was investigated,and a model which could reflect the relation between undulate angle and shear strength was built.The result indicates that structural plane presents nonlinear characteristics,specifically,the value of undulate angle,as well as corresponding shear strength,becomes larger as the normal stress decreases. 展开更多
关键词 structural plane shear mechanical behavior model failure mode nonlinear characteristics numerical analysis
在线阅读 下载PDF
PO Analysis for RCS of Nonorthogonal Dihedral Corner Reflectors Coated by RAM
12
作者 殷红成 黄培康 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第4期1-6,共6页
The backscattering radar cross section (RCS) of nonorthogonal dihedral corner reflectors coated by RAM (radar absorbing materials) is formulated by the method of PO (physical optics), where singly, doubly, and triply ... The backscattering radar cross section (RCS) of nonorthogonal dihedral corner reflectors coated by RAM (radar absorbing materials) is formulated by the method of PO (physical optics), where singly, doubly, and triply reflected contributions are considered. The final expressions are analytical and allow for the incidence nonperpendicular to the fold axis of the reflector. The results are compared with ones of MoM (method of moment), which shows that the trend of backscatter pattern of the dihedral corner reflector can be well predicted by this method. 展开更多
关键词 Computer simulation Directional patterns (antenna) Light scattering Method of moments Mirrors numerical analysis Radar antennas
在线阅读 下载PDF
Sulfur poisoning mechanism of three way catalytic converter and its grey relational analysis
13
作者 蔡皓 刘亚飞 +3 位作者 龚金科 鄂加强 耿玉鹤 余立平 《Journal of Central South University》 SCIE EI CAS 2014年第11期4091-4096,共6页
Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, ste... Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC. 展开更多
关键词 sulfur poisoning three-way catalytic converter reaction mechanism numerical simulation grey relational analysis
在线阅读 下载PDF
Influence of water-rich tunnel by shield tunneling on existing bridge pile foundation in layered soils 被引量:9
14
作者 HUANG Kan SUN Yi-wei +3 位作者 ZHOU De-quan LI Yu-jian JIANG Meng HUANG Xian-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2574-2588,共15页
At present,shield tunneling often needs to pass through a large number of bridge pile foundations.However,there are few studies on the influence of shield tunneling on adjacent pile foundations by combining with groun... At present,shield tunneling often needs to pass through a large number of bridge pile foundations.However,there are few studies on the influence of shield tunneling on adjacent pile foundations by combining with groundwater seepage.Based on Winkler model,the calculation equations of shield tunneling on vertical and horizontal displacement of adjacent bridge pile are derived.Meanwhile,full and part three-dimensional finite element models are established to analyze the trend of bridge pier settlement,ground surface settlement trough,vertical and horizontal displacement of the pile and pile stress under three calculation conditions,i.e.,not considering groundwater effect,considering stable groundwater effect and fluid-soil interaction.The results show that the calculated value is small when the effect of groundwater is not considered;the seepage velocity of the soil above the excavation face is faster than that of the surrounding soil under fluid-soil interaction,and after the shield passing,the groundwater on both sides shows a flow trend of“U”shape on the ground surface supplying to the upper part of the tunnel;the vertical displacement of the pile body is bounded by the horizontal position of the top of the tunnel,the upper pile body settles,and the lower pile body deforms upward.The horizontal displacement of pile body presents a continuous“S”shape distribution,causing stress concentration near the tunnel.The calculated results of fluid-soil interaction are in good agreement with the field measured data and accord with the actual situation. 展开更多
关键词 shield tunnel bridge pile foundation Winkler model fluid-soil interaction numerical analysis
在线阅读 下载PDF
Safe roof thickness and span of stope under complex filling body 被引量:8
15
作者 罗周全 谢承煜 +2 位作者 贾楠 杨彪 程贵海 《Journal of Central South University》 SCIE EI CAS 2013年第12期3641-3647,共7页
Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stabili... Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stability of roof thickness, chamber and spacer pillar in actual mining was investigated; meanwhile, the formed goaf during mining is so vulnerable that surrounding rock collapses early. Based on this point, elasticity mechanics and limit span theory were used to study separately the roof thickness and the span limit of goaf formed in mining, and then a reasonable roof thickness of 8 m and goaf span of 14 m are proposed. In addition, the stability of roof thickness, chamber and spacer pillar were investigated and analyzed by using numerical analysis method; meanwhile, the field monitoring on the displacement of caving chamber was conducted. The results show that the maximum compressive stress of surrounding rock is 20 MPa, and the maximum tensile stress is 1.2 MPa, which is less than the ultimate tensile strength of 2.4 MPa. Moreover, plastic zone has little influence on stope stability. In addition, the displacement of 11 mm is also smaller. The displacement monitoring results are consistent with the numerical results. Thus, the roof thickness and span of goaf proposed are safe. 展开更多
关键词 complex filling body roof thickness span of goal mechanical analysis numerical analysis
在线阅读 下载PDF
Bearing capacity and settlement of strip footing on geosynthetic reinforced clayey slopes 被引量:6
16
作者 S.A.Naeini B.Khadem Rabe E.Mahmoodi 《Journal of Central South University》 SCIE EI CAS 2012年第4期1116-1124,共9页
The effect of geosynthetic reinforcing on bearing capacity of a strip footing resting on georeinforced clayey slopes was investigated.The results of a series of numerical study using finite element analyses on strip f... The effect of geosynthetic reinforcing on bearing capacity of a strip footing resting on georeinforced clayey slopes was investigated.The results of a series of numerical study using finite element analyses on strip footing upon both reinforced and unreinforced clayey slopes were presented.The objectives of this work are to:1) determine the influence of reinforcement on the bearing-capacity of the strip footings adjacent slopes,2) suggest an optimum number of reinforcement and 3) survey the effect of friction angle in clayey soils reinforced by geogrids.The investigations were carried out by varying the edge distance of the footing from slope.Also different numbers of geosynthetic layers were applied to obtaining the maximum bearing capacity and minimum settlement.To achieve the third objective,two different friction angles were used.The results show that the load?settlement behavior and ultimate bearing capacity of footing can be considerably improved by the inclusion of reinforcing layer.But using more than one layer reinforcement,the ultimate bearing capacity does not change considerably.It is also shown that for both reinforced and unreinforced slopes,the bearing capacity increases with an increase in edge distance.In addition,as the soil friction angle is increased,the efficiency of reinforcing reduces. 展开更多
关键词 geosynthetic reinforcing numerical analysis bearing capacity strip footing clayey slope friction angle
在线阅读 下载PDF
FE modeling of concrete beams and columns reinforced with FRP composites 被引量:4
17
作者 Farid Abed Chahmi Oucif +2 位作者 Yousef Awera Haya H.Mhanna Hakem Alkhraisha 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期1-14,共14页
Compression and flexure members such as columns and beams are critical in a structure as its failure could lead to the collapse of the structure.In the present work,numerical analysis of square and circle short column... Compression and flexure members such as columns and beams are critical in a structure as its failure could lead to the collapse of the structure.In the present work,numerical analysis of square and circle short columns,and reinforced concrete(RC)beams reinforced with fiber reinforced polymer composites are carried out.This work is divided into two parts.In the first part,numerical study of axial behavior of square and circular concrete columns reinforced with Glass Fiber Reinforced Polymer(GFRP)and Basalt Fiber Reinforced Polymer(BFRP)bars and spiral,and Carbon Fiber Reinforced Polymer(CFRP)wraps is conducted.The results of the first part showed that the axial capacity of the circular RC columns reinforced with GFRP increases with the increase of the longitudinal reinforcement ratio.In addition,the results of the numerical analysis showed good correlation with the experimental ones.An interaction diagram for BFRP RC columns is also developed with considering various eccentricities.The results of numerical modeling of RC columns strengthened with CFRP wraps revealed that the number and the spacing between the CFRP wraps provide different levels of ductility enhancement to the column.For the cases considered in this study,column with two middle closely spaced CFRP wraps demonstrated the best performance.In the second part of this research,flexural behavior of RC beams reinforced with BFRP,GFRP and CFRP bars is investigated along with validation of the numerical model with the experimental tests.The results resembled the experimental observations that indicate significant effect of the FRP bar diameter and type ont he flexural capacity of the RC beams.It was also shown that Increasing the number of bars while keeping the same reinforcement ratio enhanced the stiffness of the RC beam. 展开更多
关键词 numerical analysis BRFP GFRP CFRP COLUMNS BEAMS Experimental tests
在线阅读 下载PDF
Failure mode and strength anisotropic characteristic of stratified rock mass under uniaxial compressive situation 被引量:4
18
作者 鲁光银 朱自强 +1 位作者 柳群义 何现启 《Journal of Central South University》 SCIE EI CAS 2009年第4期663-668,共6页
A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visu... A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation. 展开更多
关键词 stratified rock mass failure mode STRENGTH anisotropic characteristic numerical analysis
在线阅读 下载PDF
Performance of fixed geosynthetic technique of GRPS embankment 被引量:3
19
作者 ZHANG Jun ZHENG Jun-jie MA Qiang 《Journal of Central South University》 SCIE EI CAS 2013年第8期2245-2254,共10页
Geosynthetic-reinforced and pile-supported (GRPS) embankment has been increasingly constructed in a large number of regions and for a wide range of projects in the past decades. However, many disadvantages are expos... Geosynthetic-reinforced and pile-supported (GRPS) embankment has been increasingly constructed in a large number of regions and for a wide range of projects in the past decades. However, many disadvantages are exposed through a lot of applications on conventional technique of GRPS embankment (called CT embankment), i.e., intolerable settlement and lateral displacement, low geosynthetic efficiency, etc. In view of these disadvantages, the fixed geosynthetic technique of GRPS embankment (called FGT embankment) is developed in this work. In this system, the geosynthetic is fixed on the pile head by the steel bar fulcrum and concrete fixed top. The principles and construction techniques involved in the FGT embankment are described firstly. Then, the numerical analysis method and two-stage analysis method are used to study the performance of FGT embankment, respectively. It is shown that the FGT embankment can provide a better improvement technique to construct a high embankment over soft ground. 展开更多
关键词 geosynthetic-reinforced and pile-supported embankment fixed geosynthetic technique numerical analysis two-stageanalysis method soft soil
在线阅读 下载PDF
Seismic performance of tunnel lining of side-by-side and vertically stacked twin-tunnels 被引量:3
20
作者 陳水龍 魏敏樺 《Journal of Central South University》 SCIE EI CAS 2011年第4期1226-1234,共9页
The dynamic interaction between tunnel lining and its surrounding soil is a complicated issue as the magnitude of seismic wave from bedrock to the structure can be easily influenced by the geometrical layout and struc... The dynamic interaction between tunnel lining and its surrounding soil is a complicated issue as the magnitude of seismic wave from bedrock to the structure can be easily influenced by the geometrical layout and structural stiffness of the tunnel.A series of numerical analysis was conducted to study the dynamic response of the tunnel lining of side-by-side and vertically stacked double-tube tunnel since the inertia and kinematic interactions between the tunnel lining and the surrounding soil during an earthquake could induce excessive stresses to the lining itself due to the stiffness variation between the lining and the soil.Real earthquake ground acceleration was used as an input motion in the dynamic analysis.The interactive behavior of bending moment and axial forces,and the displacement of the tunnels were used to evaluate the effect of tunnel geometrical layout on the performance of the lining.It is found that the effect of earthquake on the axial thrust of the lining is insignificant,and there is a reduction of the bending moment in the lining due to the redistribution of the surrounding soil after the earthquake. 展开更多
关键词 underground excavation tunnel lining design seismic response numerical analysis
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部