期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Improved pruning algorithm for Gaussian mixture probability hypothesis density filter 被引量:8
1
作者 NIE Yongfang ZHANG Tao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期229-235,共7页
With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ... With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones. 展开更多
关键词 Gaussian mixture probability hypothesis density(GM-PHD) filter pruning algorithm proximity targets clutter rate
在线阅读 下载PDF
Kernel density estimation and marginalized-particle based probability hypothesis density filter for multi-target tracking 被引量:3
2
作者 张路平 王鲁平 +1 位作者 李飚 赵明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期956-965,共10页
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ... In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD. 展开更多
关键词 particle filter with probability hypothesis density marginalized particle filter meanshift kernel density estimation multi-target tracking
在线阅读 下载PDF
Free clustering optimal particle probability hypothesis density(PHD) filter
3
作者 李云湘 肖怀铁 +2 位作者 宋志勇 范红旗 付强 《Journal of Central South University》 SCIE EI CAS 2014年第7期2673-2683,共11页
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori... As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments. 展开更多
关键词 multiple target tracking probability hypothesis density filter optimal sampling density particle filter random finite set clustering algorithm state extraction
在线阅读 下载PDF
A New Deghosting Algorithm with Hypothesis Testing Data Fusion
4
作者 唐小明 何友 王国宏 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第2期14-19,共6页
Eliminating the false intersection (deghosting) is a difficult problem in a passive cross location system. Using a decentralized decision fusion topology, a new deghosting algorithm derived from hypothesis testing the... Eliminating the false intersection (deghosting) is a difficult problem in a passive cross location system. Using a decentralized decision fusion topology, a new deghosting algorithm derived from hypothesis testing theory is developed. It uses the difference between ghosts and true targets in the statistical error, which occurs between their projection angles on a deghosting sensor and is measured from a deghosting sensor, and constructs a corresponding test statistic. Under the Gaussian assumption, ghosts and true targets are decided and discriminated by Chi-square distribution. Simulation results show the feasibility of the algorithm. 展开更多
关键词 Deghosting hypothesis testing Decentralized decision fusion.
在线阅读 下载PDF
Multiple model PHD filter for tracking sharply maneuvering targets using recursive RANSAC based adaptive birth estimation
5
作者 DING Changwen ZHOU Di +2 位作者 ZOU Xinguang DU Runle LIU Jiaqi 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期780-792,共13页
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron... An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation. 展开更多
关键词 multitarget tracking probability hypothesis density(PHD)filter sharply maneuvering targets multiple model adaptive birth intensity estimation
在线阅读 下载PDF
MM-CBMeMBer滤波器跟踪多机动目标 被引量:4
6
作者 熊波 甘露 《雷达学报(中英文)》 2012年第3期238-245,共8页
多模型(Multiple Model,MM)概率假设密度(Probability Hypothesis Density,PHD)滤波器能同时估计机动目标个数及状态,但其序贯蒙特卡罗(Sequential Monte Carlo,SMC)实现运用粒子聚类算法提取目标状态,不仅引入额外计算量,且可能导致目... 多模型(Multiple Model,MM)概率假设密度(Probability Hypothesis Density,PHD)滤波器能同时估计机动目标个数及状态,但其序贯蒙特卡罗(Sequential Monte Carlo,SMC)实现运用粒子聚类算法提取目标状态,不仅引入额外计算量,且可能导致目标丢失。针对这一问题,该文提出一种基于多模型的势平衡无偏多目标多伯努利(Multiple Model Cardinality Balanced Multiple target Multi-Bernoulli,MM-CBMeMBer)滤波器,在每次扫描杂波数低于20,检测概率大于0.9的环境中,该方法利用一组伯努利参数近似机动目标状态的后验概率,并通过对伯努利参数的简单运算估计出目标状态,有效地避免了常规聚类算法。仿真结果表明,该方法与多模型概率假设密度滤波器相比,表征估计误差的最优子模型分配距离明显降低。 展开更多
关键词 多机动目标跟踪 概率假设密度(Probability hypothesis Density PHD) 势平衡无偏多目标多伯努利(Cardinality'Balanced MULTIPLE target Multi—Bernoulli CBMeMBer) 多模型(Multiple Model MM) 序贯蒙特卡罗(Sequential Monte Carlo SMC)
在线阅读 下载PDF
Robust cubature Kalman filter method for the nonlinear alignment of SINS 被引量:7
7
作者 Shi-luo Guo Ying-jie Sun +1 位作者 Li-min Chang Yang Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期593-598,共6页
Nonlinear initial alignment is a significant research topic for strapdown inertial navigation system(SINS).Cubature Kalman filter(CKF)is a popular tool for nonlinear initial alignment.Standard CKF assumes that the sta... Nonlinear initial alignment is a significant research topic for strapdown inertial navigation system(SINS).Cubature Kalman filter(CKF)is a popular tool for nonlinear initial alignment.Standard CKF assumes that the statics of the observation noise are pre-given before the filtering process.Therefore,any unpredicted outliers in observation noise will decrease the stability of the filter.In view of this problem,improved CKF method with robustness is proposed.Multiple fading factors are introduced to rescale the observation noise covariance.Then the update stage of the filter can be autonomously tuned,and if there are outliers exist in the observations,the update should be less weighted.Under the Gaussian assumption of KF,the Mahalanobis distance of the innovation vector is supposed to be Chi-square distributed.Therefore a judging index based on Chi-square test is designed to detect the noise outliers,determining whether the fading tune are required.The proposed method is applied in the nonlinear alignment of SINS,and vehicle experiment proves the effective of the proposed method. 展开更多
关键词 SINS Nonlinear alignment Cubature Kalman filter ROBUST Multiple fading factors hypothesis test
在线阅读 下载PDF
Multi-target tracking algorithm based on PHD filter against multi-range-false-target jamming 被引量:12
8
作者 TIAN Chen PEI Yang +1 位作者 HOU Peng ZHAO Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期859-870,共12页
Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) met... Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter. 展开更多
关键词 multi-range-false-target(MRFT)jamming multi-target tracking(MTT) probability hypothesis density(PHD) target amplitude feature gating strategy
在线阅读 下载PDF
New deghosting method based on generalized triangulation 被引量:5
9
作者 Bai Jing Wang Guohong Xiu Jianjuan Wang Xiaobo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期504-511,共8页
A new deghosting method based on the generalized triangulation is presented. First, two intersection points corresponding to the emitter position are obtained by utilizing two azimuth angles and two elevation angles f... A new deghosting method based on the generalized triangulation is presented. First, two intersection points corresponding to the emitter position are obtained by utilizing two azimuth angles and two elevation angles from two jammed 3-D radars (or 2-D passive sensors). Then, hypothesis testing based deghosting method in the multiple target scenarios is proposed using the two intersection points. In order to analyze the performance of the proposed method, the correct association probability of the true targets and the incorrect association probability of the ghost targets are defined. Finally, the Monte Carlo simulations are given for the proposed method compared with the hinge angle method in the cases of both two and three radars. The simulation results show that the proposed method has better performance than the hinge angle method in three radars case. 展开更多
关键词 deghosting generalized triangulation hinge angle distributed radar network hypothesis testing
在线阅读 下载PDF
Labeled box-particle CPHD filter for multiple extended targets tracking 被引量:4
10
作者 ZOU Zhibin SONG Liping CHENG Xuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期57-67,共11页
In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with ... In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results. 展开更多
关键词 EXTENDED target MULTIPLE TARGETS tracking labled boxparticle cardinalized probability hypothesis density (CPHD).
在线阅读 下载PDF
Fast density peak-based clustering algorithm for multiple extended target tracking 被引量:4
11
作者 SHEN Xinglin SONG Zhiyong +1 位作者 FAN Hongqi FU Qiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期435-447,共13页
The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influen... The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter. 展开更多
关键词 FAST DENSITY peak-based clustering (FDPC) MULTIPLE extended target partition probability hypothesis DENSITY (PHD) filter track.
在线阅读 下载PDF
Model update mechanism for mean-shift tracking 被引量:3
12
作者 PengNingsong YangJie LiuErqi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期52-57,共6页
In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and cur... In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and current candidate. A self-tuning method is used for adaptively adjust all the parameters of the filters under the analysis of the filtering residuals. In addition, hypothesis testing servers as the criterion for determining whether to accept filtering result. Therefore, the tracker has the ability to handle occlusion so as to avoid over-update. The experimental results show that our method can not only keep up with the object appearance and scale changes but also be robust to occlusion. 展开更多
关键词 MEAN-SHIFT TRACKING model update Kalman filter hypothesis testing.
在线阅读 下载PDF
Multi-target tracking algorithm of boost-phase ballistic missile defense 被引量:2
13
作者 Kangsheng Tian Feng Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期90-100,共11页
Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper ... Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA). 展开更多
关键词 ballistic missile multiple hypotheses tracking (MHT) linear assignment problem (LAP) hypothesis pruning.
在线阅读 下载PDF
On-line outlier and change point detection for time series 被引量:1
14
作者 苏卫星 朱云龙 +1 位作者 刘芳 胡琨元 《Journal of Central South University》 SCIE EI CAS 2013年第1期114-122,共9页
The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detectio... The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detection, etc. In most previous works, outlier detection and change point detection have not been related explicitly and the change point detections did not consider the influence of outliers, in this work, a unified detection framework was presented to deal with both of them. The framework is based on ALARCON-AQUINO and BARRIA's change points detection method and adopts two-stage detection to divide the outliers and change points. The advantages of it lie in that: firstly, unified structure for change detection and outlier detection further reduces the computational complexity and make the detective procedure simple; Secondly, the detection strategy of outlier detection before change point detection avoids the influence of outliers to the change point detection, and thus improves the accuracy of the change point detection. The simulation experiments of the proposed method for both model data and actual application data have been made and gotten 100% detection accuracy. The comparisons between traditional detection method and the proposed method further demonstrate that the unified detection structure is more accurate when the time series are contaminated by outliers. 展开更多
关键词 outlier detection change point detection time series hypothesis test
在线阅读 下载PDF
SMC-PHD based multi-target track-before-detect with nonstandard point observations model 被引量:5
15
作者 占荣辉 高彦钊 +1 位作者 胡杰民 张军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期232-240,共9页
Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method ... Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data. 展开更多
关键词 adaptive particle sampling multi-target track-before-detect probability hypothesis density(PHD) filter sequential Monte Carlo(SMC) method
在线阅读 下载PDF
On Teacher's Language Input
16
作者 燕青英 《陕西师范大学学报(哲学社会科学版)》 CSSCI 北大核心 2000年第S1期288-289,共2页
Appropriate input is the key point in language acquisition,and teacher’s language input is an indispensable and basic factor which decides success or failure of teaching.
关键词 inptu hypothesis INPUT language learning and teaching
在线阅读 下载PDF
心理情感因素及对外语教学的启示 被引量:1
17
作者 杨丰宁 《山东外语教学》 北大核心 1993年第3期63-64,73,共3页
学习者在学习外语时,有的是成功者,而有的则是失败者。究其原因,当然不能排除教师的水平,学习者自身的努力和语言天赋等因素,但是,外语学习是一个极其复杂的心理过程,学习的成败还牵涉到许多其他因素。美国当代语言学家克拉申(Stephen D... 学习者在学习外语时,有的是成功者,而有的则是失败者。究其原因,当然不能排除教师的水平,学习者自身的努力和语言天赋等因素,但是,外语学习是一个极其复杂的心理过程,学习的成败还牵涉到许多其他因素。美国当代语言学家克拉申(Stephen D.Krashen)提出的情感过滤假设(Affective filter hypothesis)指出了影响外语学习速度和效果的又一原因。 展开更多
关键词 外语教学 情感过滤假设 克拉申 学习过程 心理过程 语言天赋 语言错误 hypothesis 当代语言学 语言学习
在线阅读 下载PDF
Multiple extended target tracking algorithm based on Gaussian surface matrix 被引量:2
18
作者 Jinlong Yang Peng Li +1 位作者 Zhihua Li Le Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期279-289,共11页
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi... In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking. 展开更多
关键词 multiple extended target tracking irregular shape Gaussian surface matrix(GSM) probability hypothesis density(PHD)
在线阅读 下载PDF
Simulation of hemodynamics in portal vein hypertension using CFD
19
作者 Xiao Li Yansong Pu +2 位作者 Peng Nie Zongfang Li Bin Chen 《医用生物力学》 EI CAS CSCD 北大核心 2013年第S1期99-101,共3页
Introduction Liver cirrhosis generally occurs with the hemodynamic changes during the portal vein hypertension and finally leads to the atrophy of the right lobe of the liver and hepatic failure<sup>[1]</sup&... Introduction Liver cirrhosis generally occurs with the hemodynamic changes during the portal vein hypertension and finally leads to the atrophy of the right lobe of the liver and hepatic failure<sup>[1]</sup>.According to the hemodynamic changes,a hypothesis has been proposed that the liver volume is related to the istribution of blood from the splenic vein(SV)that involves nutrition from spleen and pancreas<sup>[2,3]</sup>.The objective of the present paper is to simulate the blood flow in real models of portal vein hypertension and validate the hypothesis using computational fluid dynamics(CFD)method.Methods This study includes 2 patients with liver cirrhosis and a set of 4 normal subjects. 展开更多
关键词 cirrhosis HEMODYNAMIC nutrition PANCREAS SPLENIC ATROPHY hypothesis validate finally SPLEEN
在线阅读 下载PDF
Maximal-minimal correlation atoms algorithm for sparse recovery
20
作者 Wei Gan Luping Xu Hua Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期579-585,共7页
A new iterative algorithm is proposed to reconstruct an unknown sparse signal from a set of projected measurements. Unlike existing greedy pursuit methods which only consider the atoms having the highest correlation w... A new iterative algorithm is proposed to reconstruct an unknown sparse signal from a set of projected measurements. Unlike existing greedy pursuit methods which only consider the atoms having the highest correlation with the residual signal, the proposed algorithm not only considers the higher correlation atoms but also reserves the lower correlation atoms with the residual signal. In the lower correlation atoms, only a few are correct which usually impact the reconstructive performance and decide the reconstruction dynamic range of greedy pursuit methods. The others are redundant. In order to avoid redundant atoms impacting the reconstructive accuracy, the Bayesian pursuit algorithm is used to eliminate them. Simulation results show that the proposed algorithm can improve the reconstructive dynamic range and the reconstructive accuracy. Furthermore, better noise immunity compared with the existing greedy pursuit methods can be obtained. 展开更多
关键词 compressive sensing (CS) correlation atom Bayesian hypothesis sparse reconstruction.
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部