Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on th...Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on the surface of well-dispersed nano-sized carbon black for supercapacitor. The micro-structure of the C/PANI composite electrode materials were analyzed by SEM. The electrochemical properties of C/ PANI and PANI composite electrode were characterized by means of the galvanostatic charge-discharge experiment, cyclic voltammetric measurement and impedance spectroscopy analysis. The results show that by adding the nano-sized carbon black in the process of chemical polymerization of the aniline, the polyaniline can be in situ polymerized and well-coated onto the carbon black particles, which may effectively improve the aggregation of particles and the electrolyte penetration. What’s more , the maximum of specific capacitance of C/PANI electrode 437.6F·g -1 can be attained. Compared with PANI electrode, C/PANI electrode shows more desired capacitance characteristics, smaller internal resistance and better cycle performance.展开更多
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti...Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.展开更多
A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal st...A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal structure was characterized.In a three-electrode system,Co-BD,as the electrode material for supercapacitors,achieved a specific capacitance of 830 F·g^(-1)at 1 A·g^(-1),equivalent to a specific capacity of 116.4 mAh·g^(-1),and exhibited high-rate capability,reaching 212 F·g^(-1)at 20 A·g^(-1).Impressively,Co-BD||rGO(reduced graphene oxide),representing an asymmetrical supercapacitor,owns a higher energy density of 14.2 Wh·kg^(-1)at 0.80 kW·kg^(-1),and an excellent cycle performance(After 4000 cycles at 1 A·g^(-1),the capacitance retention was up to 94%).CCDC:2418872.展开更多
Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This re...Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This review summarizes recent advances in CD-based materials for advanced batteries.Methods for the preparation of CDs are first introduced,focusing on the feasibility of large-scale synthesis,and four critical uses of CDs are analyzed:electrolyte solutions,metal electrode coatings,electrode materials,and solid-state batteries.We then consider how CDs suppress dendrite formation,decrease volume expansion,accelerate charge transfer,and improve ion migration.Finally,existing problems are discussed,including the industrial production of CDs,their role as additives in the evolution of electrode interfaces,and strategies for giving them multifunctionality.展开更多
Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)...Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)suffer from a large size,short lifespan,low power density,and poor reliability,which limits their use.In contrast,ultrafast supercapacitors(SCs)are ideal for replacing commercial AECs because of their extremely high power densities,fast charging and discharging,and excellent high-frequency re-sponse.We review the design principles and key parameters for ultrafast supercapacitors and summarize research pro-gress in recent years from the aspects of electrode materials,electrolytes,and device configurations.The preparation,structures,and frequency response performance of electrode materials mainly consisting of carbon materials such as graphene and carbon nanotubes,conductive polymers,and transition metal compounds,are focused on.Finally,future research directions for ultrafast SCs are suggested.展开更多
基金Project(2005CB623703) supported by the National Basic Research Program of China project(5JJ30103) supported bythe Natural Science Foundation of Hunan Province
文摘Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on the surface of well-dispersed nano-sized carbon black for supercapacitor. The micro-structure of the C/PANI composite electrode materials were analyzed by SEM. The electrochemical properties of C/ PANI and PANI composite electrode were characterized by means of the galvanostatic charge-discharge experiment, cyclic voltammetric measurement and impedance spectroscopy analysis. The results show that by adding the nano-sized carbon black in the process of chemical polymerization of the aniline, the polyaniline can be in situ polymerized and well-coated onto the carbon black particles, which may effectively improve the aggregation of particles and the electrolyte penetration. What’s more , the maximum of specific capacitance of C/PANI electrode 437.6F·g -1 can be attained. Compared with PANI electrode, C/PANI electrode shows more desired capacitance characteristics, smaller internal resistance and better cycle performance.
文摘Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.
文摘A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal structure was characterized.In a three-electrode system,Co-BD,as the electrode material for supercapacitors,achieved a specific capacitance of 830 F·g^(-1)at 1 A·g^(-1),equivalent to a specific capacity of 116.4 mAh·g^(-1),and exhibited high-rate capability,reaching 212 F·g^(-1)at 20 A·g^(-1).Impressively,Co-BD||rGO(reduced graphene oxide),representing an asymmetrical supercapacitor,owns a higher energy density of 14.2 Wh·kg^(-1)at 0.80 kW·kg^(-1),and an excellent cycle performance(After 4000 cycles at 1 A·g^(-1),the capacitance retention was up to 94%).CCDC:2418872.
文摘Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This review summarizes recent advances in CD-based materials for advanced batteries.Methods for the preparation of CDs are first introduced,focusing on the feasibility of large-scale synthesis,and four critical uses of CDs are analyzed:electrolyte solutions,metal electrode coatings,electrode materials,and solid-state batteries.We then consider how CDs suppress dendrite formation,decrease volume expansion,accelerate charge transfer,and improve ion migration.Finally,existing problems are discussed,including the industrial production of CDs,their role as additives in the evolution of electrode interfaces,and strategies for giving them multifunctionality.
文摘Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)suffer from a large size,short lifespan,low power density,and poor reliability,which limits their use.In contrast,ultrafast supercapacitors(SCs)are ideal for replacing commercial AECs because of their extremely high power densities,fast charging and discharging,and excellent high-frequency re-sponse.We review the design principles and key parameters for ultrafast supercapacitors and summarize research pro-gress in recent years from the aspects of electrode materials,electrolytes,and device configurations.The preparation,structures,and frequency response performance of electrode materials mainly consisting of carbon materials such as graphene and carbon nanotubes,conductive polymers,and transition metal compounds,are focused on.Finally,future research directions for ultrafast SCs are suggested.