To meet the challenge of implementing rapidly advanced, time-consuming medical image processing algorithms, it is necessary to develop a medical image processing technology to process a 2D or 3D medical image dynamica...To meet the challenge of implementing rapidly advanced, time-consuming medical image processing algorithms, it is necessary to develop a medical image processing technology to process a 2D or 3D medical image dynamically on the web. But in a premier system, only static image processing can be provided with the limitation of web technology. The development of Java and CORBA (common object request broker architecture) overcomes the shortcoming of the web static application and makes the dynamic processing of medical images on the web available. To develop an open solution of distributed computing, we integrate the Java, and web with the CORBA and present a web-based medical image dynamic processing methed, which adopts Java technology as the language to program application and components of the web and utilies the CORBA architecture to cope with heterogeneous property of a complex distributed system. The method also provides a platform-independent, transparent processing architecture to implement the advanced image routines and enable users to access large dataset and resources according to the requirements of medical applications. The experiment in this paper shows that the medical image dynamic processing method implemented on the web by using Java and the CORBA is feasible.展开更多
The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
In this paper we summarize the research results by Chinese scientists in 2016–2018. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches associated with groundbased...In this paper we summarize the research results by Chinese scientists in 2016–2018. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches associated with groundbased observation capability development, dynamical processes, and properties of circulation and chemistryclimate coupling of the middle atmospheric layers.展开更多
基金This project was supported by the National Natural Science Foundation of China (69931010).
文摘To meet the challenge of implementing rapidly advanced, time-consuming medical image processing algorithms, it is necessary to develop a medical image processing technology to process a 2D or 3D medical image dynamically on the web. But in a premier system, only static image processing can be provided with the limitation of web technology. The development of Java and CORBA (common object request broker architecture) overcomes the shortcoming of the web static application and makes the dynamic processing of medical images on the web available. To develop an open solution of distributed computing, we integrate the Java, and web with the CORBA and present a web-based medical image dynamic processing methed, which adopts Java technology as the language to program application and components of the web and utilies the CORBA architecture to cope with heterogeneous property of a complex distributed system. The method also provides a platform-independent, transparent processing architecture to implement the advanced image routines and enable users to access large dataset and resources according to the requirements of medical applications. The experiment in this paper shows that the medical image dynamic processing method implemented on the web by using Java and the CORBA is feasible.
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
文摘In this paper we summarize the research results by Chinese scientists in 2016–2018. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches associated with groundbased observation capability development, dynamical processes, and properties of circulation and chemistryclimate coupling of the middle atmospheric layers.