期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Investigating the dynamic mechanical behaviors of polyurea through experimentation and modeling 被引量:17
1
作者 Hao Wang Ximin Deng +3 位作者 Haijun Wu Aiguo Pi Jinzhu Li Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期875-884,共10页
Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea... Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea XS-350 were investigated via systematic experimentation over a wide range of strain rates(0.001-7000 s^-1)by using an MTS,Instron VHS,and split-Hopkinson bars.The stress-strain behavior of polyurea was obtained for various strain rates,and the effects of strain rate on the primary mechanical properties were analyzed.Additionally,a modified rate-dependent constitutive model is proposed based on the nine-parameter Mooney-Rivlin model.The results show that the stress-strain curves can be divided into three distinct regions:the linear-elastic stage,the highly elastic stage,and an approximate linear region terminating in fracture.The mechanical properties of the polyurea material were found to be highly dependent on the strain rate.Furthermore,a comparison between model predictions and the experimental stress-strain curves demonstrated that the proposed model can characterize the mechanical properties of polyurea over a wide range of strain rates. 展开更多
关键词 POLYUREA Strain rate effect dynamic mechanical properties Constitutive model
在线阅读 下载PDF
Mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions 被引量:3
2
作者 熊良宵 虞利军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1096-1103,共8页
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas... To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution. 展开更多
关键词 cement mortar mechanical properties relative dynamic elastic modulus compressive strength
在线阅读 下载PDF
Dynamic compressive response of porcine muscle measured using a split Hopkinson bar system with a pair of PVDF force transducers 被引量:2
3
作者 Yao-ke Wen Liang Xu +2 位作者 Ai-jun Chen Fang-dong Dong Bin Qin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期298-305,共8页
The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the... The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties. 展开更多
关键词 PVDF Hopkinson bar Porcine muscle dynamic mechanical properties Constitutive model
在线阅读 下载PDF
Effects of thermal treatment on physical and mechanical characteristics of coal rock 被引量:16
4
作者 YIN Tu-bing WANG Pin +2 位作者 LI Xi-bing SHU Rong-hua YE Zhou-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2336-2345,共10页
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)... To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature. 展开更多
关键词 rock mechanical property split Hopkinson pressure bar (SHPB) high temperature coal rock dynamic mechanical property
在线阅读 下载PDF
Multi-scale impact resistance of flexible microporous metal rubber:Dynamic energy dissipation mechanism based on dynamic friction locking effect
5
作者 Qiang Song Liangliang Shen +3 位作者 Linwei Shi Ling Pan Ang Wang Zhiying Ren 《Defence Technology(防务技术)》 2025年第9期97-111,共15页
Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static ... Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance. 展开更多
关键词 Flexible microporous metal rubber Strain rate effect Energy dissipation dynamic mechanical properties
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部