期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Development of XY scanner with minimized coupling motions for high-speed atomic force microscope
1
作者 PARK Jong-kyu MOON Won-kyu 《Journal of Central South University》 SCIE EI CAS 2011年第3期697-703,共7页
The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the anal... The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the analyses of the dynamic characteristics of existing linear motion stages using a dynamic analysis program, Recurdyn. Because the scanning speed of each direction may differ, the linear motion stage for a high-speed scanner was designed to have different resonance frequencies for the modes, with one dominant displacement in the desired directions. This objective was achieved by using one-direction flexure mechanisms for each direction and mounting one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separated the frequencies of two vibration modes with one dominant displacement in each desired direction, and hence suppressed the coupling between motions in two directions. A pair of actuators was used for each axis to decrease the crosstalk between the two motions and give a sufficient force to actuate the slow motion stage, which carried the fast motion stage, A lossy material, such as grease, was inserted into the flexure hinge to suppress vibration problems that occurred when using an input triangular waveforrn. With these design modifications and the vibration suppression method, a novel scanner with a scanning speed greater than 20 Hz is achieved. 展开更多
关键词 atomic force microscope SCANNER piezoelectric stack actuator CROSSTALK flexure hinge
在线阅读 下载PDF
Hydration film measurement on mica and coal surfaces using atomic force microscopy and interfacial interactions 被引量:3
2
作者 XING Yao-wen GUI Xia-hui CAO Yi-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1295-1305,共11页
The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces... The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m. 展开更多
关键词 hydration film atomic force microscope surface energy interfacial interaction
在线阅读 下载PDF
Inhibition effect of a synthesized N,N′-bis(2-hydroxybenzaldehyde)-1,3-propandiimine on corrosion of mild steel in HCl 被引量:1
3
作者 O. Ghasemi I. Danaee +2 位作者 G.R. Rashed M. RashvandAvei M. H. Maddahy 《Journal of Central South University》 SCIE EI CAS 2013年第2期301-311,共11页
The corrosion inhibition of mild steel in 1 mol/L HC1 by N, N'-bis (2-hydroxybenzaldehyde)- 1, 3-propandiimine (2-HBP) has been investigated by using potentiodynamic polarization, electrochemical impedance spectr... The corrosion inhibition of mild steel in 1 mol/L HC1 by N, N'-bis (2-hydroxybenzaldehyde)- 1, 3-propandiimine (2-HBP) has been investigated by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and chronoamperometry measurements. The experimental results suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. Polarization curves reveal that this organic compound is a mixed type inhibitor. The effect of temperature on the corrosion behavior of mild steel with the addition of the Schiff base was studied in the temperature range from 25 ℃ to 65℃. The experimentally obtained adsorption isotherms follow the Langmuir equation. Activation and thermodynamic adsorption parameters such as Ea, △H, △S,Kads and AG,ds were calculated by the corrosion currents at different temperatures and using the adsorption isotherm. The morphology of mild steel surface in the absence and presence of 2-HBP was examined by atomic force microscope (AFM) images. 展开更多
关键词 corrosion inhibitor Schiffbase ADSORPTION Langmuir equation atomic force microscope
在线阅读 下载PDF
Composite iterative learning controller design for gradually varying references with applications in an AFM system
4
作者 方勇纯 张玉东 董晓坤 《Journal of Central South University》 SCIE EI CAS 2014年第1期180-189,共10页
Learning control for gradually varying references in iteration domain was considered in this research, and a composite iterative learning control strategy was proposed to enable a plant to track unknown iteration-depe... Learning control for gradually varying references in iteration domain was considered in this research, and a composite iterative learning control strategy was proposed to enable a plant to track unknown iteration-dependent trajectories. Specifically, by decoupling the current reference into the desired trajectory of the last trial and a disturbance signal with small magnitude, the learning and feedback parts were designed respectively to ensure fine tracking performance. After some theoretical analysis, the judging condition on whether the composite iterative learning control approach achieves better control results than pure feedback contro! was obtained for varying references. The convergence property of the closed-loop system was rigorously studied and the saturation problem was also addressed in the controller. The designed composite iterative learning control strategy is successfully employed in an atomic force microscope system, with both simulation and experimental results clearly demonstrating its superior performance. 展开更多
关键词 iterative learning control SATURATION feedback control feedforward control atomic force microscope
在线阅读 下载PDF
Generation reason and corrosion characteristicof cavity of tinplate alloy layer
5
作者 黄久贵 李宁 周德瑞 《Journal of Central South University of Technology》 2004年第4期362-366,共5页
The surface morphology of alloy layer of tinplate was studied by means of scanning electron microscopy. By using the layer on layer debonding technology of glow discharge spectrum, the contents of C and O at the bound... The surface morphology of alloy layer of tinplate was studied by means of scanning electron microscopy. By using the layer on layer debonding technology of glow discharge spectrum, the contents of C and O at the boundary of alloy layer and black plate were analyzed. And the corrosion characteristic of cavity of tinplate alloy layer was studied on-line and in-situ by means of electrochemical atomic force microscope. The corrosion depth of cavity of alloy layer in-situ after different corrosion time was measured. The results show that the cavity of alloy layer is a critical factor causing rapid decline of corrosion resistance of tinplate, and the formation of cavity of alloy layer is due to incorrect pretreatment of black plate before electrotinning. The cavity of alloy layer is the internal factor causing pitting corrosion of tinplate when the tinplate is applied to food packaging material. And the dynamic equation of pitting corrosion generated in the cavity of alloy layer conforms to logarithm law. 展开更多
关键词 tinplate alloy layer scanning electron microscopy glow discharge spectrum electrochemical atomic force microscope corrosion resistance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部