This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is establi...This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.展开更多
Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of ci...Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.展开更多
The formation control of multiple unmanned aerial vehicles(multi-UAVs)has always been a research hotspot.Based on the straight line trajectory,a multi-UAVs target point assignment algorithm based on the assignment pro...The formation control of multiple unmanned aerial vehicles(multi-UAVs)has always been a research hotspot.Based on the straight line trajectory,a multi-UAVs target point assignment algorithm based on the assignment probability is proposed to achieve the shortest overall formation path of multi-UAVs with low complexity and reduce the energy consumption.In order to avoid the collision between UAVs in the formation process,the concept of safety ball is introduced,and the collision detection based on continuous motion of two time slots and the lane occupation detection after motion is proposed to avoid collision between UAVs.Based on the idea of game theory,a method of UAV motion form setting based on the maximization of interests is proposed,including the maximization of self-interest and the maximization of formation interest is proposed,so that multi-UAVs can complete the formation task quickly and reasonably with the linear trajectory assigned in advance.Finally,through simulation verification,the multi-UAVs target assignment algorithm based on the assignment probability proposed in this paper can effectively reduce the total path length,and the UAV motion selection method based on the maximization interests can effectively complete the task formation.展开更多
The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have v...The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have very limited analysis of the influence mechanism of influencing factors,and none of them has analyzed the influence of the guidance law.This paper considers the influencing factors of both the interceptor and the target more comprehensively.Interceptor parameters include speed,guidance law,guidance error,fuze error,and fragment killing ability,while target performance includes speed,maneuverability,and vulnerability.In this paper,an interception model is established,Monte Carlo simulation is carried out,and the influence mechanism of each factor is analyzed based on the model and simulation results.Finally,this paper proposes a classification-regression neural network to quickly estimate the interception probability based on the value of influencing factors.The proposed method reduces the interference of invalid interception data to valid data,so its prediction accuracy is significantly better than that of pure regression neural networks.展开更多
A new algorithm using orthogonal polynomials and sample moments was presented for estimating probability curves directly from experimental or field data of rock variables. The moments estimated directly from a sample ...A new algorithm using orthogonal polynomials and sample moments was presented for estimating probability curves directly from experimental or field data of rock variables. The moments estimated directly from a sample of observed values of a random variable could be conventional moments (moments about the origin or central moments) and probability-weighted moments (PWMs). Probability curves derived from orthogonal polynomials and conventional moments are probability density functions (PDF), and probability curves derived from orthogonal polynomials and PWMs are inverse cumulative density functions (CDF) of random variables. The proposed approach is verified by two most commonly-used theoretical standard distributions: normal and exponential distribution. Examples from observed data of uniaxial compressive strength of a rock and concrete strength data are presented for illustrative purposes. The results show that probability curves of rock variable can be accurately derived from orthogonal polynomials and sample moments. Orthogonal polynomials and PWMs enable more secure inferences to be made from relatively small samples about an underlying probability curve.展开更多
Starting with personal preference, Savage [3] constructs a foundation theory for probability from the qualitative probability to the quantitative probability and to utility. There are some profound logic connections b...Starting with personal preference, Savage [3] constructs a foundation theory for probability from the qualitative probability to the quantitative probability and to utility. There are some profound logic connections between three steps in Savage's theory; that is, quantitative concepts properly represent qualitative concepts. Moreover, Savage's definition of subjective probability is in accordance with probability theory, and the theory gives us a rational decision model only if we assume that the weak ...展开更多
Relations between statistical residence time series and effective shooting are analyzed in accordance with the properties of the random residence time of maneuver targets crossing shot area in a given time. An estimat...Relations between statistical residence time series and effective shooting are analyzed in accordance with the properties of the random residence time of maneuver targets crossing shot area in a given time. An estimation method for kill probability is proposed, which solves the probability of number of residence times satisfied effective shooting in given time. Some expressions and their approximate formulae of kill probability are derived, under known the distribution of residence time series. Theoretical analysis and simulation results show that this method is suitable for evaluating the hit ability of fire system for maneuver targets in random shooting.展开更多
The coupling model of major influence factors such state affecting the chloride diffusion process in concrete is as environmental relative humidity, load-induced crack and stress discussed. The probability distributio...The coupling model of major influence factors such state affecting the chloride diffusion process in concrete is as environmental relative humidity, load-induced crack and stress discussed. The probability distributions of the critical chloride concentration Cc, the chloride diffusion coefficient D, and the surface chloride concentration Cs were determined based on the collected natural exposure data. And the estimation of probability of corrosion initiation considering the coupling effects of influence factors is presented. It is found that the relative humidity and curing time are the most effective factors affecting the probability of corrosion initiation before and after 10 years of exposure time. At the same exposure time, the influence of load-induced crack and stress state on the probability of corrosion initiation is obvious, in which the effect of crack is the most one展开更多
With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathe...The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations.展开更多
The wind effects on steady-state scan characteristics and hit probability of terminal-sensitive projectile were discussed in this paper. Considering wind as the constitutions of the average wind and the impulsive wind...The wind effects on steady-state scan characteristics and hit probability of terminal-sensitive projectile were discussed in this paper. Considering wind as the constitutions of the average wind and the impulsive wind, a simplified wind field model was established for the ballistic calculation of the steady-state scan phase; under the windy condition, the effects of the range wind and the beam wind on the steady-state scan characteristics of the terminal-sensitive projectile were analyzed in detail and its hit probabilities for a certain armored target were calculated. The calculated results show that, when the wind speed exceeds a certain value, the hit probabilities of terminal-sensitive projectile drop rapidly; the wind effects must be considered in the application of the terminal-sensitive projectiles. This paper provides some theoretical references for the fire wind speed correction and the global structure optimization of the terminal-sensitive projectile.展开更多
The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondor...The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.展开更多
A novel strategy of probability density function (PDF) shape control is proposed in stochastic systems. The control er is designed whose parameters are optimal y obtained through the improved particle swarm optimiza...A novel strategy of probability density function (PDF) shape control is proposed in stochastic systems. The control er is designed whose parameters are optimal y obtained through the improved particle swarm optimization algorithm. The parameters of the control er are viewed as the space position of a particle in particle swarm optimization algorithm and updated continual y until the control er makes the PDF of the state variable as close as possible to the expected PDF. The proposed PDF shape control technique is compared with the equivalent linearization technique through simulation experiments. The results show the superiority and the effectiveness of the proposed method. The control er is excellent in making the state PDF fol ow the expected PDF and has the very smal error between the state PDF and the expected PDF, solving the control problem of the PDF shape in stochastic systems effectively.展开更多
Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced acc...Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced according to numerical analysis theory. After complicated multi-independent variables implicit functional function was simplified to be a single independent variable implicit function and rule of calculating derivative for composite function was combined with principle of the mean deviations method, an approximative solution format of implicit functional function was established through Taylor expansion series and iterative solution approach of reliability degree index was given synchronously. An engineering example was analyzed by the method. The result shows its absolute error is only 0.78% as compared with accurate solution.展开更多
A novel approach is proposed for improving adaptive feedback cancellation using a variable step-size affine projection algorithm(VSS-APA) based on global speech absence probability(GSAP).The variable step-size of the ...A novel approach is proposed for improving adaptive feedback cancellation using a variable step-size affine projection algorithm(VSS-APA) based on global speech absence probability(GSAP).The variable step-size of the proposed VSS-APA is adjusted according to the GSAP of the current frame.The weight vector of the adaptive filter is updated by the probability of the speech absence.The performance measure of acoustic feedback cancellation is evaluated using normalized misalignment.Experimental results demonstrate that the proposed approach has better performance than the normalized least mean square(NLMS) and the constant step-size affine projection algorithms.展开更多
This paper proposes a hybrid approach for recognizing human activities from trajectories. First, an improved hidden Markov model (HMM) parameter learning algorithm, HMM-PSO, is proposed, which achieves a better bala...This paper proposes a hybrid approach for recognizing human activities from trajectories. First, an improved hidden Markov model (HMM) parameter learning algorithm, HMM-PSO, is proposed, which achieves a better balance between the global and local exploitation by the nonlinear update strategy and repulsion operation. Then, the event probability sequence (EPS) which consists of a series of events is computed to describe the unique characteristic of human activities. The anatysis on EPS indicates that it is robust to the changes in viewing direction and contributes to improving the recognition rate. Finally, the effectiveness of the proposed approach is evaluated by data experiments on current popular datasets.展开更多
Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mo...Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.展开更多
In this work, a novel voice activity detection (VAD) algorithm that uses speech absence probability (SAP) based on Teager energy (TE) was proposed for speech enhancement. The proposed method employs local SAP (...In this work, a novel voice activity detection (VAD) algorithm that uses speech absence probability (SAP) based on Teager energy (TE) was proposed for speech enhancement. The proposed method employs local SAP (LSAP) based on the TE of noisy speech as a feature parameter for voice activity detection (VAD) in each frequency subband, rather than conventional LSAP. Results show that the TE operator can enhance the abiTity to discriminate speech and noise and further suppress noise components. Therefore, TE-based LSAP provides a better representation of LSAP, resulting in improved VAD for estimating noise power in a speech enhancement algorithm. In addition, the presented method utilizes TE-based global SAP (GSAP) derived in each frame as the weighting parameter for modifying the adopted TE operator and improving its performance. The proposed algorithm was evaluated by objective and subjective quality tests under various environments, and was shown to produce better results than the conventional method.展开更多
Electromagnetic coil launch is an important branch of electromagnetic launch(EML)technology,which is suitable for launching anti-torpedo torpedo(ATT).This paper focuses on the EML parameters and the interception proba...Electromagnetic coil launch is an important branch of electromagnetic launch(EML)technology,which is suitable for launching anti-torpedo torpedo(ATT).This paper focuses on the EML parameters and the interception probability of the EML two ATTs salvo.Based on the launching model of a multi-stage coil launcher,the trajectory model of the ATT and the attacking torpedo,a calculation method for the EML two ATTs salvo parameters is proposed,with the conditions of capture and interception given reasonably.An adaptive particle swarm optimization(APSO)algorithm is proposed to calculate the optimal launching parameters,by designing the adaptive inertia weight and time-varying study factors.According to the analysis of the simulation with Monte Carlo method,EML will improve the interception probability effectively,and the interception probability is affected by the launching range.The results demonstrate good performance of the proposed APSO in calculating EML parameters for the two ATTs salvo in certain combat situation.Implications of these results are particular regarding the command and decision in the anti-torpedo combat.展开更多
An improved speech absence probability estimation was proposed using environmental noise classification for speech enhancement.A relevant noise estimation approach,known as the speech presence uncertainty tracking met...An improved speech absence probability estimation was proposed using environmental noise classification for speech enhancement.A relevant noise estimation approach,known as the speech presence uncertainty tracking method,requires seeking the "a priori" probability of speech absence that is derived by applying microphone input signal and the noise signal based on the estimated value of the "a posteriori" signal-to-noise ratio(SNR).To overcome this problem,first,the optimal values in terms of the perceived speech quality of a variety of noise types are derived.Second,the estimated optimal values are assigned according to the determined noise type which is classified by a real-time noise classification algorithm based on the Gaussian mixture model(GMM).The proposed algorithm estimates the speech absence probability using a noise classification algorithm which is based on GMM to apply the optimal parameter of each noise type,unlike the conventional approach which uses a fixed threshold and smoothing parameter.The performance of the proposed method was evaluated by objective tests,such as the perceptual evaluation of speech quality(PESQ) and composite measure.Performance was then evaluated by a subjective test,namely,mean opinion scores(MOS) under various noise environments.The proposed method show better results than existing methods.展开更多
基金the National Natural Science Foundation of China(Grant No.11472137).
文摘This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.
基金supported by National Natural Science Foundation of China (Grant No. 62073256)the Shaanxi Provincial Science and Technology Department (Grant No. 2023-YBGY-342)。
文摘Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.
基金supported by the Basic Scientific Research Business Expenses of Central Universities(3072022QBZ0806)。
文摘The formation control of multiple unmanned aerial vehicles(multi-UAVs)has always been a research hotspot.Based on the straight line trajectory,a multi-UAVs target point assignment algorithm based on the assignment probability is proposed to achieve the shortest overall formation path of multi-UAVs with low complexity and reduce the energy consumption.In order to avoid the collision between UAVs in the formation process,the concept of safety ball is introduced,and the collision detection based on continuous motion of two time slots and the lane occupation detection after motion is proposed to avoid collision between UAVs.Based on the idea of game theory,a method of UAV motion form setting based on the maximization of interests is proposed,including the maximization of self-interest and the maximization of formation interest is proposed,so that multi-UAVs can complete the formation task quickly and reasonably with the linear trajectory assigned in advance.Finally,through simulation verification,the multi-UAVs target assignment algorithm based on the assignment probability proposed in this paper can effectively reduce the total path length,and the UAV motion selection method based on the maximization interests can effectively complete the task formation.
基金supported by the Foundation Strengthening Program Technology Field Foundation(2020-JCJQ-JJ-132)。
文摘The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have very limited analysis of the influence mechanism of influencing factors,and none of them has analyzed the influence of the guidance law.This paper considers the influencing factors of both the interceptor and the target more comprehensively.Interceptor parameters include speed,guidance law,guidance error,fuze error,and fragment killing ability,while target performance includes speed,maneuverability,and vulnerability.In this paper,an interception model is established,Monte Carlo simulation is carried out,and the influence mechanism of each factor is analyzed based on the model and simulation results.Finally,this paper proposes a classification-regression neural network to quickly estimate the interception probability based on the value of influencing factors.The proposed method reduces the interference of invalid interception data to valid data,so its prediction accuracy is significantly better than that of pure regression neural networks.
文摘A new algorithm using orthogonal polynomials and sample moments was presented for estimating probability curves directly from experimental or field data of rock variables. The moments estimated directly from a sample of observed values of a random variable could be conventional moments (moments about the origin or central moments) and probability-weighted moments (PWMs). Probability curves derived from orthogonal polynomials and conventional moments are probability density functions (PDF), and probability curves derived from orthogonal polynomials and PWMs are inverse cumulative density functions (CDF) of random variables. The proposed approach is verified by two most commonly-used theoretical standard distributions: normal and exponential distribution. Examples from observed data of uniaxial compressive strength of a rock and concrete strength data are presented for illustrative purposes. The results show that probability curves of rock variable can be accurately derived from orthogonal polynomials and sample moments. Orthogonal polynomials and PWMs enable more secure inferences to be made from relatively small samples about an underlying probability curve.
文摘Starting with personal preference, Savage [3] constructs a foundation theory for probability from the qualitative probability to the quantitative probability and to utility. There are some profound logic connections between three steps in Savage's theory; that is, quantitative concepts properly represent qualitative concepts. Moreover, Savage's definition of subjective probability is in accordance with probability theory, and the theory gives us a rational decision model only if we assume that the weak ...
基金Sponsored by the National Defense Funds under Grant(9140C300602080C30)Natural Science Foundation of Shanxi Province China(2008011011)
文摘Relations between statistical residence time series and effective shooting are analyzed in accordance with the properties of the random residence time of maneuver targets crossing shot area in a given time. An estimation method for kill probability is proposed, which solves the probability of number of residence times satisfied effective shooting in given time. Some expressions and their approximate formulae of kill probability are derived, under known the distribution of residence time series. Theoretical analysis and simulation results show that this method is suitable for evaluating the hit ability of fire system for maneuver targets in random shooting.
基金Project(50925829) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject(50908148) supported by the National Natural Science Foundation of ChinaProjects(2009-K4-23,2010-11-33) supported by the Research of Ministry of Housing and Urban Rural Development of China
文摘The coupling model of major influence factors such state affecting the chloride diffusion process in concrete is as environmental relative humidity, load-induced crack and stress discussed. The probability distributions of the critical chloride concentration Cc, the chloride diffusion coefficient D, and the surface chloride concentration Cs were determined based on the collected natural exposure data. And the estimation of probability of corrosion initiation considering the coupling effects of influence factors is presented. It is found that the relative humidity and curing time are the most effective factors affecting the probability of corrosion initiation before and after 10 years of exposure time. At the same exposure time, the influence of load-induced crack and stress state on the probability of corrosion initiation is obvious, in which the effect of crack is the most one
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金Projects(51409167,51139001,51179066)supported by the National Natural Science Foundation of ChinaProjects(201401022,201501036)supported by the Ministry of Water Resources Public Welfare Industry Research Special Fund,ChinaProjects(GG201532,GG201546)supported by the Scientific and Technological Research for Water Conservancy,Henan Province,China
文摘The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations.
基金Sponsored by Doctoral Foundation of Ministry of Education of China (20093219120006)
文摘The wind effects on steady-state scan characteristics and hit probability of terminal-sensitive projectile were discussed in this paper. Considering wind as the constitutions of the average wind and the impulsive wind, a simplified wind field model was established for the ballistic calculation of the steady-state scan phase; under the windy condition, the effects of the range wind and the beam wind on the steady-state scan characteristics of the terminal-sensitive projectile were analyzed in detail and its hit probabilities for a certain armored target were calculated. The calculated results show that, when the wind speed exceeds a certain value, the hit probabilities of terminal-sensitive projectile drop rapidly; the wind effects must be considered in the application of the terminal-sensitive projectiles. This paper provides some theoretical references for the fire wind speed correction and the global structure optimization of the terminal-sensitive projectile.
基金supported by the Program for New Century Excellent Talents in University, Ministry of Education (NCET-05-0803)
文摘The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.
基金supported by the National Natural Science Fundation of China(61273127)the Specialized Research Fund of the Doctoral Program in Higher Education(20106118110009+2 种基金20116118110008)the Scientific Research Plan Projects of Shaanxi Education Department(12JK0524)the Young Teachers Scientific Research Fund of Xi’an University of Posts and Telecommunications(1100434)
文摘A novel strategy of probability density function (PDF) shape control is proposed in stochastic systems. The control er is designed whose parameters are optimal y obtained through the improved particle swarm optimization algorithm. The parameters of the control er are viewed as the space position of a particle in particle swarm optimization algorithm and updated continual y until the control er makes the PDF of the state variable as close as possible to the expected PDF. The proposed PDF shape control technique is compared with the equivalent linearization technique through simulation experiments. The results show the superiority and the effectiveness of the proposed method. The control er is excellent in making the state PDF fol ow the expected PDF and has the very smal error between the state PDF and the expected PDF, solving the control problem of the PDF shape in stochastic systems effectively.
基金Project(50378036) supported by the National Natural Science Foundation of ChinaProject(200503) supported by Foundation of Communications Department of Hunan Province, China
文摘Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced according to numerical analysis theory. After complicated multi-independent variables implicit functional function was simplified to be a single independent variable implicit function and rule of calculating derivative for composite function was combined with principle of the mean deviations method, an approximative solution format of implicit functional function was established through Taylor expansion series and iterative solution approach of reliability degree index was given synchronously. An engineering example was analyzed by the method. The result shows its absolute error is only 0.78% as compared with accurate solution.
基金Project(2010-0020163)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education
文摘A novel approach is proposed for improving adaptive feedback cancellation using a variable step-size affine projection algorithm(VSS-APA) based on global speech absence probability(GSAP).The variable step-size of the proposed VSS-APA is adjusted according to the GSAP of the current frame.The weight vector of the adaptive filter is updated by the probability of the speech absence.The performance measure of acoustic feedback cancellation is evaluated using normalized misalignment.Experimental results demonstrate that the proposed approach has better performance than the normalized least mean square(NLMS) and the constant step-size affine projection algorithms.
基金supported by the National Natural Science Foundation of China(60573159)the Guangdong High Technique Project(201100000514)
文摘This paper proposes a hybrid approach for recognizing human activities from trajectories. First, an improved hidden Markov model (HMM) parameter learning algorithm, HMM-PSO, is proposed, which achieves a better balance between the global and local exploitation by the nonlinear update strategy and repulsion operation. Then, the event probability sequence (EPS) which consists of a series of events is computed to describe the unique characteristic of human activities. The anatysis on EPS indicates that it is robust to the changes in viewing direction and contributes to improving the recognition rate. Finally, the effectiveness of the proposed approach is evaluated by data experiments on current popular datasets.
基金Projects(51021004,51379141)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.
基金Project supported by Inha University Research GrantProject(10031764) supported by the Strategic Technology Development Program of Ministry of Knowledge Economy, Korea
文摘In this work, a novel voice activity detection (VAD) algorithm that uses speech absence probability (SAP) based on Teager energy (TE) was proposed for speech enhancement. The proposed method employs local SAP (LSAP) based on the TE of noisy speech as a feature parameter for voice activity detection (VAD) in each frequency subband, rather than conventional LSAP. Results show that the TE operator can enhance the abiTity to discriminate speech and noise and further suppress noise components. Therefore, TE-based LSAP provides a better representation of LSAP, resulting in improved VAD for estimating noise power in a speech enhancement algorithm. In addition, the presented method utilizes TE-based global SAP (GSAP) derived in each frame as the weighting parameter for modifying the adopted TE operator and improving its performance. The proposed algorithm was evaluated by objective and subjective quality tests under various environments, and was shown to produce better results than the conventional method.
基金National Natural Science Foundation of China (Grant No. 51777212)
文摘Electromagnetic coil launch is an important branch of electromagnetic launch(EML)technology,which is suitable for launching anti-torpedo torpedo(ATT).This paper focuses on the EML parameters and the interception probability of the EML two ATTs salvo.Based on the launching model of a multi-stage coil launcher,the trajectory model of the ATT and the attacking torpedo,a calculation method for the EML two ATTs salvo parameters is proposed,with the conditions of capture and interception given reasonably.An adaptive particle swarm optimization(APSO)algorithm is proposed to calculate the optimal launching parameters,by designing the adaptive inertia weight and time-varying study factors.According to the analysis of the simulation with Monte Carlo method,EML will improve the interception probability effectively,and the interception probability is affected by the launching range.The results demonstrate good performance of the proposed APSO in calculating EML parameters for the two ATTs salvo in certain combat situation.Implications of these results are particular regarding the command and decision in the anti-torpedo combat.
基金Project supported by an Inha University Research GrantProject(10031764) supported by the Strategic Technology Development Program of Ministry of Knowledge Economy,Korea
文摘An improved speech absence probability estimation was proposed using environmental noise classification for speech enhancement.A relevant noise estimation approach,known as the speech presence uncertainty tracking method,requires seeking the "a priori" probability of speech absence that is derived by applying microphone input signal and the noise signal based on the estimated value of the "a posteriori" signal-to-noise ratio(SNR).To overcome this problem,first,the optimal values in terms of the perceived speech quality of a variety of noise types are derived.Second,the estimated optimal values are assigned according to the determined noise type which is classified by a real-time noise classification algorithm based on the Gaussian mixture model(GMM).The proposed algorithm estimates the speech absence probability using a noise classification algorithm which is based on GMM to apply the optimal parameter of each noise type,unlike the conventional approach which uses a fixed threshold and smoothing parameter.The performance of the proposed method was evaluated by objective tests,such as the perceptual evaluation of speech quality(PESQ) and composite measure.Performance was then evaluated by a subjective test,namely,mean opinion scores(MOS) under various noise environments.The proposed method show better results than existing methods.