Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) w...Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.展开更多
The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation ...The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation model of water source chiller plant established in dynamic transient simulation program (TRNSYS),the four-variable quadratic orthogonal regression experiments were carried out by taking cooling load,cooling water supply temperature,cooling water flow rate and chilled water flow rate as variables,and the fitting formulas expressing the relationships between the total energy consumption of chiller plant with the four selected parameters was obtained. With the SAS statistical software and MATHEMATICA mathematical software,the optimal chilled water flow rate and cooling water flow rate which result in the minimum total energy consumption were determined under continuously varying cooling load and cooling water supply temperature. With regard to a chiller plant serving an office building in Shanghai,the total energy consumptions under different control strategies were computed in terms of the forecasting function of cooling load and water source temperature. The results show that applying the optimal control strategy to the chiller plant can bring a saving of 23.27% in power compared with the corresponding conventional variable speed plant,indicating that the optimal control strategy can improve the energy efficiency of chiller plant.展开更多
After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy ...After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system.展开更多
Cotton bollworm(Helicoverpa armigera) is an important agricultural pest that causes severe yield loss to crops,particularly to cotton.Transgenic Bt crops have been successful in
The efforts to further reduce fuel consumption of vehicles equipped with a pushbelt type Continuously Variable Transmission(CVT) focus on different sources of loss.In this paper the magnitude of these losses and their...The efforts to further reduce fuel consumption of vehicles equipped with a pushbelt type Continuously Variable Transmission(CVT) focus on different sources of loss.In this paper the magnitude of these losses and their potential for reduction is described.Inside the CVT,the variator,its control strategy and the hydraulic actuation circuit can be distinguished as the main potentials.A major opportunity is offered by a new control strategy that takes the actual slip between belt and pulley as the control parameter.The resulting decrease of clamping forces on the pushbelt leads to a reduction of variator and actuation losses.Further potential is found in the hydraulic actuation circuit by an improved tuning of the power supply to the actual power requirement.Outside the CVT additional potential is found in start-stop functionality as supported by measures inside the transmission.The paper describes the theoretical background as well as practical fuel savings of up to 5.5% that were obtained in tests on vehicle level.Slip control adds an inherent robustness to the operation of the pushbelt and opens up the fuel saving potential of the CVT thus reinforcing its position as the benchmark for the near future.展开更多
A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor dr...A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor drive tracked unit used, which showed high dynamic performance compared with the conventional tracked unit. The control algorithm, developed based on decision trees and neural networking, facilitates autonomous switching between "Velocity-driven Mode" and "Torquedriven Mode". To verify the feasibility and effectiveness of the control strategy, we built a self-designed test platform and used it to debug the control program; we then made a robot prototype and conducted further experiments on single-step, ramp, and rubble terrains. The results show that the proposed walking system has excellent dynamic performance and the control strategy is very efficient, suggesting that a robot with this type of explosion-proof walking system can be successfully applied in Chinese coal mines.展开更多
Luffing mechanism is a key component of the construction machinery.This paper proposes a two degree of freedom(2-DOF)luffing mechanism,which has one more pair of driving cylinders than the single DOF luffing mechanism...Luffing mechanism is a key component of the construction machinery.This paper proposes a two degree of freedom(2-DOF)luffing mechanism,which has one more pair of driving cylinders than the single DOF luffing mechanism,to improve the performance of the machinery.To establish the dynamic model of the 2-DOF luffing mechanism,firstly,we develop a hierarchical method to deduce the Jacobian matrix and Hessian matrix for obtaining the kinematics equations.Subsequently,we divide the luffing mechanism into six bodies considering actuators,and deduce the kinetic equations of each body by the Newton-Euler method.Based on the dynamic model,we simulate the luffing process.Finally,a prototype is built on a pile driver to validate the model.Simulations and experiments show that the dynamic model can reflect the dynamic properties of the proposed luffing mechanism.And the control strategy that the front cylinders retract first shows better mechanical behavior than the other two control strategies.This research provides a reference for the design and application of 2-DOF luffing mechanism on construction machinery.The modeling approach can also be applied to similar mechanism with serial closed kinematic chains,which allows to calculate the dynamic parameters easily and exactly.展开更多
In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular sta...In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular stators was put forward. Firstly,the structure and working principle of this motor were introduced, especially a spiral spring as the preload applied component was designed for adaptive adjustment. Then, the friction drive model of 2-DOF spherical motor was built up from spatial geometric relation between three annular stators and the spherical rotor which was used to analyze the mechanical characteristics of the motor.The optimal control strategy for minimum norm solution of three stators' angular velocity was proposed, using Moore-Penrose generalized inverse matrix. Finally, a 2-DOF prototype was fabricated and tested, which ran stably and controllably. The maximum no-load velocity and stall torque are 92 r/min and 90 m N·m, respectively. The 2-DOF spherical ultrasonic motor has compact structure, easy assembly, good performance and stable operation.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
Excitation regulator has played an important role to ensure that generator run safely and stably. However, in some remote areas, the rural small generator excitation control system is very backward, and it has hindere...Excitation regulator has played an important role to ensure that generator run safely and stably. However, in some remote areas, the rural small generator excitation control system is very backward, and it has hindered the development of Chinese agriculture and the pace of new countryside construction. This paper introduced a kind of structure and basic principle of DSP-based automatic excitation regulator, which was applied to rural small generator. We chose TMS320LF2407A chip as the core of regulator control system; the regulator adjusted PWM based on PID control strategy to control the exciting current. The theoretical analysis showed that the regulator had the characteristics of simplicity and reliability, well dynamic and static characteristics, and it could also adjust its own state quickly. The result was applicable to small rural hydropower station.展开更多
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of China
文摘Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.
基金Project(G-0805-10156) supported by US Energy Foundation
文摘The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation model of water source chiller plant established in dynamic transient simulation program (TRNSYS),the four-variable quadratic orthogonal regression experiments were carried out by taking cooling load,cooling water supply temperature,cooling water flow rate and chilled water flow rate as variables,and the fitting formulas expressing the relationships between the total energy consumption of chiller plant with the four selected parameters was obtained. With the SAS statistical software and MATHEMATICA mathematical software,the optimal chilled water flow rate and cooling water flow rate which result in the minimum total energy consumption were determined under continuously varying cooling load and cooling water supply temperature. With regard to a chiller plant serving an office building in Shanghai,the total energy consumptions under different control strategies were computed in terms of the forecasting function of cooling load and water source temperature. The results show that applying the optimal control strategy to the chiller plant can bring a saving of 23.27% in power compared with the corresponding conventional variable speed plant,indicating that the optimal control strategy can improve the energy efficiency of chiller plant.
基金Project(2013BAF07B02)supported by National Science and Technology Support Program of China
文摘After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system.
文摘Cotton bollworm(Helicoverpa armigera) is an important agricultural pest that causes severe yield loss to crops,particularly to cotton.Transgenic Bt crops have been successful in
文摘The efforts to further reduce fuel consumption of vehicles equipped with a pushbelt type Continuously Variable Transmission(CVT) focus on different sources of loss.In this paper the magnitude of these losses and their potential for reduction is described.Inside the CVT,the variator,its control strategy and the hydraulic actuation circuit can be distinguished as the main potentials.A major opportunity is offered by a new control strategy that takes the actual slip between belt and pulley as the control parameter.The resulting decrease of clamping forces on the pushbelt leads to a reduction of variator and actuation losses.Further potential is found in the hydraulic actuation circuit by an improved tuning of the power supply to the actual power requirement.Outside the CVT additional potential is found in start-stop functionality as supported by measures inside the transmission.The paper describes the theoretical background as well as practical fuel savings of up to 5.5% that were obtained in tests on vehicle level.Slip control adds an inherent robustness to the operation of the pushbelt and opens up the fuel saving potential of the CVT thus reinforcing its position as the benchmark for the near future.
基金Project(2012AA041504)supported by the National High-Tech Research and Development Program of ChinaProject(KYLX15_1418)supported by the 2015 Annual General University Graduate Research and Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor drive tracked unit used, which showed high dynamic performance compared with the conventional tracked unit. The control algorithm, developed based on decision trees and neural networking, facilitates autonomous switching between "Velocity-driven Mode" and "Torquedriven Mode". To verify the feasibility and effectiveness of the control strategy, we built a self-designed test platform and used it to debug the control program; we then made a robot prototype and conducted further experiments on single-step, ramp, and rubble terrains. The results show that the proposed walking system has excellent dynamic performance and the control strategy is very efficient, suggesting that a robot with this type of explosion-proof walking system can be successfully applied in Chinese coal mines.
基金Project(2015B020238014)supported by the Science and Technology Program of Guangdong Province,China。
文摘Luffing mechanism is a key component of the construction machinery.This paper proposes a two degree of freedom(2-DOF)luffing mechanism,which has one more pair of driving cylinders than the single DOF luffing mechanism,to improve the performance of the machinery.To establish the dynamic model of the 2-DOF luffing mechanism,firstly,we develop a hierarchical method to deduce the Jacobian matrix and Hessian matrix for obtaining the kinematics equations.Subsequently,we divide the luffing mechanism into six bodies considering actuators,and deduce the kinetic equations of each body by the Newton-Euler method.Based on the dynamic model,we simulate the luffing process.Finally,a prototype is built on a pile driver to validate the model.Simulations and experiments show that the dynamic model can reflect the dynamic properties of the proposed luffing mechanism.And the control strategy that the front cylinders retract first shows better mechanical behavior than the other two control strategies.This research provides a reference for the design and application of 2-DOF luffing mechanism on construction machinery.The modeling approach can also be applied to similar mechanism with serial closed kinematic chains,which allows to calculate the dynamic parameters easily and exactly.
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular stators was put forward. Firstly,the structure and working principle of this motor were introduced, especially a spiral spring as the preload applied component was designed for adaptive adjustment. Then, the friction drive model of 2-DOF spherical motor was built up from spatial geometric relation between three annular stators and the spherical rotor which was used to analyze the mechanical characteristics of the motor.The optimal control strategy for minimum norm solution of three stators' angular velocity was proposed, using Moore-Penrose generalized inverse matrix. Finally, a 2-DOF prototype was fabricated and tested, which ran stably and controllably. The maximum no-load velocity and stall torque are 92 r/min and 90 m N·m, respectively. The 2-DOF spherical ultrasonic motor has compact structure, easy assembly, good performance and stable operation.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
文摘Excitation regulator has played an important role to ensure that generator run safely and stably. However, in some remote areas, the rural small generator excitation control system is very backward, and it has hindered the development of Chinese agriculture and the pace of new countryside construction. This paper introduced a kind of structure and basic principle of DSP-based automatic excitation regulator, which was applied to rural small generator. We chose TMS320LF2407A chip as the core of regulator control system; the regulator adjusted PWM based on PID control strategy to control the exciting current. The theoretical analysis showed that the regulator had the characteristics of simplicity and reliability, well dynamic and static characteristics, and it could also adjust its own state quickly. The result was applicable to small rural hydropower station.