期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Regulation of AtbZIP1 Gene Expression by T-DNA Insertion in Arabidopsis thaliana
1
作者 SUN Xiaoli SHAO Wanchen CAI Hua ZHU Yanming 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第3期19-23,共5页
bZIP transcription factor family is one of the largest groups of the plant transcription factor families and plays an important role in plant growth and adaption to the abiotic stresses. In this study, two AtbZIP1 mut... bZIP transcription factor family is one of the largest groups of the plant transcription factor families and plays an important role in plant growth and adaption to the abiotic stresses. In this study, two AtbZIP1 mutant Arabidopsis (bzipl) were used with T-DNA inserted into two different sites, designated as SALK-556773 and SALK-660942, in order to identify different effects on AtbZIP1 gene expression by different T-DNA insertion sites. PCR and RT-PCR results revealed that T-DNA insertion in CDS region could effectively inhibit AtbZIP1 gene expression, while T-DNA insertion in 3'-UTR couldn't. The phenotype analysis further confirmed the differences and showed that T-DNA insertion in CDS region decreased plants' drought resistance, while in 3'-UTR couldn't. The phenotype assays also suggested that AtbZIP1 held pivotal roles in plant response to drought stress. 展开更多
关键词 T-DNA insertion AtbZIP1 different sites drought stress arabidopsis thaliana
在线阅读 下载PDF
Cloning,Characterization,and Gene Annotation of Cellulose Synthase Genes from Arabidopsis thaliana
2
作者 BALASUBRAMANI G AMUDHA J KATEGERI I S KHADI B M 《棉花学报》 CSCD 北大核心 2008年第S1期50-,共1页
The mechanistic basis of cellulose biosynthesis in plants has gained ground during last decade or so.The isolation of plant cDNA clones encoding cotton homologs of the bacterial cellulose
关键词 Cloning Characterization and Gene Annotation of Cellulose Synthase Genes from arabidopsis thaliana
在线阅读 下载PDF
Constitutive Overexpression of Myo-inositol-1-Phosphate Synthase Gene (GsMIPS2) from Glycine soja Confers Enhanced Salt Tolerance at Various Growth Stages in Arabidopsis 被引量:2
3
作者 Zaib-un-Nisa Chen Chen +5 位作者 Yang Yu Chao Chen ALi Inayat Mallano Duan Xiang-bo Sun Xiao-li Zhu Yan-ming 《Journal of Northeast Agricultural University(English Edition)》 CAS 2016年第2期28-44,共17页
The enzyme myo-inositol-1-phosphate synthase(MIPS EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wal... The enzyme myo-inositol-1-phosphate synthase(MIPS EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wall constituent and production of stress related molecule. Previous reports highlighted an important role of MIPS family genes in abiotic stresses particularly under salt stress tolerance in several plant species; however, little is known about the cellular and physiological functions of MIPS2 genes under abiotic conditions. In this study, a novel salt stress responsive gene designated Gs MIPS2 from wild soybean Glycine soja 07256 was functionally characterized contained an open reading frame(ORF) of 1 533 bp coding a peptide sequence of 510 amino acids along with mass of 56 445 ku. Multiple sequence alignment analysis revealed its 92%-99% similarity with other MIPS family members in legume proteins. Quantitative real-time PCR results demonstrated that Gs MIPS2 was induced by salt stress and expressed in roots of soybean. The positive function of Gs MIPS2 under salt response at different growth stages of transgenic Arabidopsis was also elucidated. The results showed that Gs MIPS2 transgenic lines displayed increased tolerance as compared to WT and atmips2 mutant lines under salt stress. Furthermore, the expression levels of some salt stress responsive marker genes, including KIN1, RD29 A, RD29 B, P5 Cs and COR47 were significantly up-regulated in Gs MIPS2 overexpression lines than wild type and atmips2 mutant. Collectively, these results suggested that Gs MIPS2 gene was a positive regulator of plant tolerance to salt stress. This was the first report to demonstrate that overexpression of Gs MIPS2 gene from wild soybean improved salt tolerance in transgenic Arabidopsis. 展开更多
关键词 Glycine soja arabidopsis thaliana MIPS salt stress functional analysis
在线阅读 下载PDF
Identification of T-DNA Inserted Mutant Gene Transcription by Using Real-time PCR in Arabidopsis
4
作者 YUAN Man BAI Xi CAI Hua LI Yong JI Wei ZHU Yanming 《Journal of Northeast Agricultural University(English Edition)》 CAS 2011年第2期41-47,共7页
AtERF4 (ethylene response factor) is a negative regulator in jasmonic acid mediated signal transduction pathway and ethylene mediated signal transduction pathway of Arabidopsis. It could respond to abscisic acid (... AtERF4 (ethylene response factor) is a negative regulator in jasmonic acid mediated signal transduction pathway and ethylene mediated signal transduction pathway of Arabidopsis. It could respond to abscisic acid (ABA) and ethylene stimulus ATSYR1 gene encodes a syntaxin localizing at the plasma membrane in Arabidopsis, which can be induced by abiotic stress. To identify mutation lines for gene functional analysis, real-time PCR was employed to detect the expression level of AtERF4 and ATSYR1 in homozygous T-DNA insertion mutant line, respectively. Real-time PCR is a powerful tool which can be used to detect steady-state mRNA levels specifically, sensitively and reproducibly. Comparing to other forms of quantitative RT-PCR, the amount of amplified products can be detected by real-time PCR instantly and thus is a preferable alternative. In this study, RNA with T-DNA inserting into exon could be detected in AtERF4 knock-out mutation line. The results indicated that AtERF4 had been trucked in transcription level. On the other hand, T-DNA inserting into the promoter of gene ATSYR1 had no effect on reducing the expression level ofATSYR1 gene. Further molecular and phenotype studies now are ongoing to clarify the potential consequences of AtERF4 and ATSYR1 deficiency in Arabidopsis 展开更多
关键词 arabidopsis thaliana ERF4 SYR1 T-DNA insertion real-time PCR
在线阅读 下载PDF
拟南芥中异源过表达CsLOX6和CsHPL2基因提高植株耐盐性和耐旱性
5
作者 王聪 李强 +3 位作者 柴琳 王恒 余宏军 蒋卫杰 《湖北农业科学》 2024年第10期165-175,共11页
探究CsLOX6基因和CsHPL2基因对拟南芥(Arabidopsis thaliana)生长以及对干旱和盐胁迫抗性的影响,以野生型拟南芥(WT)、转基因型拟南芥(OE-CsLOX6、OE-CsHPL2)、突变体型拟南芥(TB-Atlox5)为材料,通过表型观察、转录组和代谢组学分析等... 探究CsLOX6基因和CsHPL2基因对拟南芥(Arabidopsis thaliana)生长以及对干旱和盐胁迫抗性的影响,以野生型拟南芥(WT)、转基因型拟南芥(OE-CsLOX6、OE-CsHPL2)、突变体型拟南芥(TB-Atlox5)为材料,通过表型观察、转录组和代谢组学分析等方法评估4种拟南芥的耐旱性、耐盐性。结果表明,OE-CsLOX6的地上部鲜重和根长均显著高于其他基因型植株,地下部鲜重明显高于其他基因型植株;OE-CsHPL2的地上部鲜重、地下部鲜重和根长明显低于其他基因型植株。OE-CsLOX6、OE-CsHPL2和WT的代谢物含量存在较大差异,OE-CsLOX6和WT有64个差异代谢物,其中有6个上调,58个下调;OE-CsHPL2和WT有63个差异代谢物,其中有9个上调,54个下调。过表达CsLOX6基因和CsHPL2基因可以提高拟南芥对盐胁迫和干旱胁迫的抗性。在盐胁迫和干旱胁迫下,OE-CsLOX6、OE-CsHPL2的丙二醛含量要显著低于野生型植株,膜质过氧化程度低,SOD、POD和CAT活性要明显高于野生型,提高了植株的抗氧化能力,叶片长势明显优于野生型植株。 展开更多
关键词 拟南芥(arabidopsis thaliana) 异源过表达 CsLOX6基因 CsHPL2基因 耐盐性 耐旱性 胁迫
在线阅读 下载PDF
拟南芥全人工光源栽培条件研究
6
作者 张志刚 王开梅 +2 位作者 吴兆圆 万中义 张遵霞 《湖北农业科学》 2019年第23期130-131,135,共3页
以哥伦比亚野生型拟南芥(Arabidopsis thaliana)为材料,在全人工光源条件下,对影响拟南芥生长的光、温、播种方式等因素进行了比较,测定不同条件拟南芥的叶片增长速度、抽薹时间、单株种子产量,以此来衡量拟南芥生长状况。结果表明,拟... 以哥伦比亚野生型拟南芥(Arabidopsis thaliana)为材料,在全人工光源条件下,对影响拟南芥生长的光、温、播种方式等因素进行了比较,测定不同条件拟南芥的叶片增长速度、抽薹时间、单株种子产量,以此来衡量拟南芥生长状况。结果表明,拟南芥生长适宜光照度为8000~12000 lx;每天最适宜光照时间为9 h;适宜温度为19℃;直播更适合苗期营养生长。 展开更多
关键词 拟南芥(arabidopsis thaliana) 叶片增长速度 单株种子产量 全人工光源
在线阅读 下载PDF
Biogenesis of Plant MicroRNAs
7
作者 Kong Wen-wen Wang Hong-bo Li Jing 《Journal of Northeast Agricultural University(English Edition)》 CAS 2014年第1期84-96,共13页
microRNAs (miRNAs) play important regulatory roles in eukaryotic gene expression, predominantly at the post- transcriptional level. Elaborate and diverse biogenesis pathways have evolved to produce miRNAs, miRNA bio... microRNAs (miRNAs) play important regulatory roles in eukaryotic gene expression, predominantly at the post- transcriptional level. Elaborate and diverse biogenesis pathways have evolved to produce miRNAs, miRNA biogenesis is a multistep process including transcription, precursor slicing, methylation, nuclear export, and RNA-induced silencing complex assembly. In the decade, since the first discovery of plant miRNAs, many enzymes and regulatory proteins involved in miRNA biogenesis in plants have been uncovered and a basic picture of miRNA processing is emerging gradually. In this article, we summarized the current study of plant miRNA biogenesis and discussed the multiple integrated steps and diverse pathways of miRNA processing. 展开更多
关键词 MIRNA BIOGENESIS arabidopsis thaliana PATHWAY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部