The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.How...The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.展开更多
Imaging detection is an important means to obtain target information.The traditional imaging detection technology mainly collects the intensity information and spectral information of the target to realize the classif...Imaging detection is an important means to obtain target information.The traditional imaging detection technology mainly collects the intensity information and spectral information of the target to realize the classification of the target.In practical applications,due to the mixed scenario,it is difficult to meet the needs of target recognition.Compared with intensity detection,the method of polarization detection can effectively enhance the accuracy of ground object target recognition(such as the camouflage target).In this paper,the reflection mechanism of the target surface is studied from the microscopic point of view,and the polarization characteristic model is established to express the relationship between the polarization state of the reflected signal and the target surface parameters.The polarization characteristic test experiment is carried out,and the target surface parameters are retrieved using the experimental data.The results show that the degree of polarization(DOP)is closely related to the detection zenith angle and azimuth angle.The(DOP)of the target is the smallest in the direction of light source incidence and the largest in the direction of specular reflection.Different materials have different polarization characteristics.By comparing their DOP,target classification can be achieved.展开更多
Considering the interaction between excited triplet molecule and doublet radical, based on the second-order perturbation theory and the motion equation of density matrix, the polarization intensity of RTPM were theore...Considering the interaction between excited triplet molecule and doublet radical, based on the second-order perturbation theory and the motion equation of density matrix, the polarization intensity of RTPM were theoretically calculated with the overpopulated doublet spin states and quartet spin states of radical-triplet pairs as initial conditions respectively. The results of calculation indicate that the net emissive polarization and the net absorptive polarization on the radical result from the zero-field-splitting (zfs) and the multiplet A/E and E/A polarization result from hyperfine (hf) interactions of the triplet molecule. The hyperfine related A+A/E or E+E/A CIDEP on the radical were the overpopulation of the net absorptive or emissive polarization and multiplet A/E or E/A polarization..展开更多
This article introduces a method of achieving high polarization extinction ratio using a subwavelength grating structure on a lithium niobate thin film platform,and the chip is formed on the surface of the lithium nio...This article introduces a method of achieving high polarization extinction ratio using a subwavelength grating structure on a lithium niobate thin film platform,and the chip is formed on the surface of the lithium niobate thin film.The chip,with a length of just 20μm,achieved a measured polarization extinction ratio of 29 dB at 1550 nm wavelength.This progress not only proves the possibility of achieving a high extinction ratio on a lithium niobate thin film platform,but also offers important technical references for future work on polarization beam splitters,integrated fiber optic gyroscopes,and so on.展开更多
With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation wind...With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.展开更多
Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of...Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of sul-fur prevent the full use of their capacity,leading to poor cycling performance.We used graphite carbon nitride(g-C_(3)N_(4))as the nitrogen source,and nitrogen-doped Ketjenblack(NKB)was synthesized by solid-phase calcination for use as the sulfur host.Results demonstrate that pyrrolic nitrogen serves as the primary catalytic active site in the sulfur reduction process.The high electronegativity of nitrogen significantly alters the charge distribution of the carbon matrix,changing the electron distribution around sulfur and rendering it electron-rich,which increases the interaction between S and Zn^(2+)and accelerates the reduction kinetics.NKB also forms a three-dimensional cross-linked carbon sphere network,providing abundant defect sites and a large specific surface area,which facilitates electron transfer and improves electrolyte wettability.Combined with the contribution of the ZnI2 additive,the Zn-S battery prepared with the precursor of a g-C_(3)N_(4)∶KB ratio of 3∶4 achieved an ultrahigh discharge capacity of 2069 mAh g^(-1) at a current density of 1 A/g.It also had an excellent rate performance(1257 mAh g^(-1) at 10 A/g)and a long cycling stability(705 mAh g^(-1) after 180 cycles at 5 A/g).This study provides a simple and effective strategy for improving the reduction kinetics of the sulfur cathode in Zn-S batteries and design-ing advanced cathode materials.展开更多
By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts d...By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability.展开更多
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her...Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.展开更多
Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applica...Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.展开更多
Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.W...Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.We investigated the formation of nitrogen-induced diaph-ite structures(hybrid diamond-graphite phases)and their role in changing the conductivity.Nitrogen doping in a hy-drogen-rich plasma environment promotes the emergence of unique sp^(3)-sp^(2)bonding interfaces,where diamond grains are covalently integrated with graphitic domains,facilitating a structure-driven electronic transition.High-resolution transmis-sion electron microscopy and selected area electron diffraction reveal five-fold,six-fold and twelve-fold symmetries,along with an atypical{200}crystallographic reflection,confirming diaphite formation in 5%and 10%N-doped UNCD films,while high-er doping levels(15%and 20%)result in extensive graphitization.Raman spectroscopy tracks the evolution of sp^(2)bonding with increasing nitrogen content,while atomic force microscopy and X-ray diffraction indicate a consistent diamond grain size of~8 nm.Cryogenic electronic transport measurements reveal a conductivity increase from 8.72 to 708 S/cm as the nitrogen dop-ing level increases from 5%to 20%,which is attributed to defect-mediated carrier transport and 3D weak localization.The res-ulting conductivity is three orders of magnitude higher than previously reported.These findings establish a direct correlation between diaphite structural polymorphism and tunable electronic properties in nitrogen-doped UNCD films,offering new ways for defect-engineering diamond-based electronic materials.展开更多
In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are train...In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model.展开更多
Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This charact...Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This characteristic holds significant implications in the realm of novel satellite propulsion.Introducing a fraction of the electrical energy into energetic ionic liquid fuels,the thermal decomposition process is facilitated by reducing the apparent activation energy required,and electrical energy can trigger the electrochemical decomposition of ionic liquids,presenting a promising approach to enhance combustion efficiency and energy release.This study applied an external voltage during the thermal decomposition of 1-ethyl-3-methylimidazole nitrate([EMIm]NO_(3)),revealing the effective alteration of the activation energy of[EMIm]NO_(3).The pyrolysis,electrochemical decomposition,and electron assisted enhancement products were identified through Thermogravimetry-Differential scanning calorimetry-Fourier transform infrared-Mass spectrometry(TG-DSC-FTIR-MS)and gas chromatography(GC)analyses,elucidating the degradation mechanism of[EMIm]NO_(3).Furthermore,an external voltage was introduced during the combustion of[EMIm]NO_(3),demonstrating the impact of voltage on the combustion process.展开更多
This paper discusses the influence of Sb/In ratio on the transport properties and crystal quality of the 200 nm InAs_(x)Sb_(1-x)thin film.The Sb content of InAs_(x)Sb_(1-x)thin film in all samples was verified by HRXR...This paper discusses the influence of Sb/In ratio on the transport properties and crystal quality of the 200 nm InAs_(x)Sb_(1-x)thin film.The Sb content of InAs_(x)Sb_(1-x)thin film in all samples was verified by HRXRD of the symmetrical 004 reflections and asymmetrical 115 reflections.The calculation results show that the Sb component was 0.6 in the InAs_(x)Sb_(1-x)thin film grown under the conditions of Sb/In ratio of 6 and As/In ratio of 3,which has the highest electron mobility(28560 cm^(2)/V·s)at 300 K.At the same time,the influence ofⅤ/Ⅲratio on the transport properties and crystal quality of Al_(0.2)In_(0.8)Sb/InAs_(x)Sb_(1-x)quantum well heterostructures also has been investigated.As a result,the Al_(0.2)In_(0.8)Sb/InAs_(0.4)Sb_(0.6)quantum well heterostructure with a channel thickness of 30 nm grown under the conditions of Sb/In ratio of 6 and As/In ratio of 3 has a maximum electron mobility of 28300 cm^(2)/V·s and a minimum RMS roughness of 0.68 nm.Through optimizing the growth conditions,our samples have higher electron mobility and smoother surface morphology.展开更多
The syndrome a posteriori probability of the log-likelihood ratio of intercepted codewords is used to develop an algorithm that recognizes the polar code length and generator matrix of the underlying polar code.Based ...The syndrome a posteriori probability of the log-likelihood ratio of intercepted codewords is used to develop an algorithm that recognizes the polar code length and generator matrix of the underlying polar code.Based on the encoding structure,three theorems are proved,two related to the relationship between the length and rate of the polar code,and one related to the relationship between frozen-bit positions,information-bit positions,and codewords.With these three theorems,polar codes can be quickly reconstruced.In addition,to detect the dual vectors of codewords,the statistical characteristics of the log-likelihood ratio are analyzed,and then the information-and frozen-bit positions are distinguished based on the minimumerror decision criterion.The bit rate is obtained.The correctness of the theorems and effectiveness of the proposed algorithm are validated through simulations.The proposed algorithm exhibits robustness to noise and a reasonable computational complexity.展开更多
Transient electronics is a versatile tool that finds applications in various fields,including medical biology,environmental protection,and data information security.In the context of data protection,the traditional pa...Transient electronics is a versatile tool that finds applications in various fields,including medical biology,environmental protection,and data information security.In the context of data protection,the traditional passive degradation transient mode is being replaced by the active destruction mode,which features a short self-destruction time and provides greater resistance to recovery.This article presents an overview of recent progress in transient electronics,assessing the benefits and suitability of varying transient mechanisms.The article also analyses the influence of transient electronics on military security while emphasizing the advantages of implementing energetic materials.Besides,the article introduces energetic transient devices and evaluates their ability to support the autonomous operation of transient electronic devices.展开更多
This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃...This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.展开更多
Gear flank modification is essential to reduce the noise generated in the gear meshing process,improve the gear transmission performance,and reduce the meshing impact.Aiming at the problem of solving the additional mo...Gear flank modification is essential to reduce the noise generated in the gear meshing process,improve the gear transmission performance,and reduce the meshing impact.Aiming at the problem of solving the additional motions of each axis in the higher-order topology modification technique and how to accurately add the different movements expressed in the form of higher-order polynomials to the corresponding motion axes of the machine tool,a flexible higher-order gear topology modification technique based on an electronic gearbox is proposed.Firstly,a two-parameter topology gear surface equation and a grinding model of wheel grinding gears are established,and the axial feed and tangential feed are expressed in a fifth-order polynomial formula.Secondly,the polynomial coefficients are solved according to the characteristics of the point contact when grinding gears.Finally,an improved electronic gearbox model is constructed by combining the polynomial interpolation function to achieve gear topology modification.The validity and feasibility of the modification method based on the electronic gearbox are verified by experimental examples,which is of great significance for the machining of modification gears based on the continuous generative grinding method of the worm grinding wheel.展开更多
This paper introduced a compact high flux polarized neutron beam generator scheme,which used air as the working medium and had low energy consumption.The neutron beam generator adopted a linear three compartment confi...This paper introduced a compact high flux polarized neutron beam generator scheme,which used air as the working medium and had low energy consumption.The neutron beam generator adopted a linear three compartment configuration,sequentially using nitrogen nucleus tandem near range accelerated polarization target spallation nuclear reaction technology,neutron multiplication technology,neutron beam polarization and near range acceleration technology,neutron focusing and shooting control technology.Through design and equivalent verification,it has been proven that the total length of the device does not exceed 5 m,the effective range can reach several hundred kilometers,the neutron flux at the muzzle is not less than 10^(25) n·cm^(-2)·s^(-1),which attenuates to 10^(10) n·cm^(-2)·s^(-1) at a distance of several 100 km,and this flux can effectively strike the target.It can be used as a defensive directed energy weapon with high energy density and has broad application prospects.展开更多
基金Supported by the National Key Research and Development Program of China(2022YFA1404602)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)+3 种基金the National Natural Science Foundation of China(U23B2045,62305362)the Program of Shanghai Academic/Technology Research Leader(22XD1424400)the Fund of SITP Innovation Foundation(CX-461 and CX-522)Special Project to Seize the Commanding Heights of Science and Technology of Chinese Academy of Sciences,subtopic(GJ0090406-6).
文摘The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.
基金supported by the National Key Laboratory of Electromagnetic Space Security(JCKY2023230C009).
文摘Imaging detection is an important means to obtain target information.The traditional imaging detection technology mainly collects the intensity information and spectral information of the target to realize the classification of the target.In practical applications,due to the mixed scenario,it is difficult to meet the needs of target recognition.Compared with intensity detection,the method of polarization detection can effectively enhance the accuracy of ground object target recognition(such as the camouflage target).In this paper,the reflection mechanism of the target surface is studied from the microscopic point of view,and the polarization characteristic model is established to express the relationship between the polarization state of the reflected signal and the target surface parameters.The polarization characteristic test experiment is carried out,and the target surface parameters are retrieved using the experimental data.The results show that the degree of polarization(DOP)is closely related to the detection zenith angle and azimuth angle.The(DOP)of the target is the smallest in the direction of light source incidence and the largest in the direction of specular reflection.Different materials have different polarization characteristics.By comparing their DOP,target classification can be achieved.
文摘Considering the interaction between excited triplet molecule and doublet radical, based on the second-order perturbation theory and the motion equation of density matrix, the polarization intensity of RTPM were theoretically calculated with the overpopulated doublet spin states and quartet spin states of radical-triplet pairs as initial conditions respectively. The results of calculation indicate that the net emissive polarization and the net absorptive polarization on the radical result from the zero-field-splitting (zfs) and the multiplet A/E and E/A polarization result from hyperfine (hf) interactions of the triplet molecule. The hyperfine related A+A/E or E+E/A CIDEP on the radical were the overpopulation of the net absorptive or emissive polarization and multiplet A/E or E/A polarization..
基金Supported by Beijing Natural Science Foundation(4242062)and the Youth Innovation Promotion Association,CAS(2021108)。
文摘This article introduces a method of achieving high polarization extinction ratio using a subwavelength grating structure on a lithium niobate thin film platform,and the chip is formed on the surface of the lithium niobate thin film.The chip,with a length of just 20μm,achieved a measured polarization extinction ratio of 29 dB at 1550 nm wavelength.This progress not only proves the possibility of achieving a high extinction ratio on a lithium niobate thin film platform,but also offers important technical references for future work on polarization beam splitters,integrated fiber optic gyroscopes,and so on.
文摘With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.
文摘Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of sul-fur prevent the full use of their capacity,leading to poor cycling performance.We used graphite carbon nitride(g-C_(3)N_(4))as the nitrogen source,and nitrogen-doped Ketjenblack(NKB)was synthesized by solid-phase calcination for use as the sulfur host.Results demonstrate that pyrrolic nitrogen serves as the primary catalytic active site in the sulfur reduction process.The high electronegativity of nitrogen significantly alters the charge distribution of the carbon matrix,changing the electron distribution around sulfur and rendering it electron-rich,which increases the interaction between S and Zn^(2+)and accelerates the reduction kinetics.NKB also forms a three-dimensional cross-linked carbon sphere network,providing abundant defect sites and a large specific surface area,which facilitates electron transfer and improves electrolyte wettability.Combined with the contribution of the ZnI2 additive,the Zn-S battery prepared with the precursor of a g-C_(3)N_(4)∶KB ratio of 3∶4 achieved an ultrahigh discharge capacity of 2069 mAh g^(-1) at a current density of 1 A/g.It also had an excellent rate performance(1257 mAh g^(-1) at 10 A/g)and a long cycling stability(705 mAh g^(-1) after 180 cycles at 5 A/g).This study provides a simple and effective strategy for improving the reduction kinetics of the sulfur cathode in Zn-S batteries and design-ing advanced cathode materials.
基金supported by the Petrochemical Research Institute Foundation(21-CB-09-01)the National Natural Science Foundation of China(22302186,22025205)+1 种基金the China Postdoctoral Science Foundation(2022M713030,2023T160618)the Fundamental Research Funds for the Central Universities(WK2060000058,WK2060000038).
文摘By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability.
基金supported by National Natural Science Foundation of China(No.523B2070,No.52225606).
文摘Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.
基金supported by the National Natu-ral Science Foundation of China(Grants No.12174220 and No.12074217)the Shandong Provincial Science Foundation for Excellent Young Scholars(Grant No.ZR2023YQ001)+1 种基金the Taishan Young Scholar Program of Shandong Provincethe Qilu Young Scholar Pro-gram of Shandong University.
文摘Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.
文摘Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.We investigated the formation of nitrogen-induced diaph-ite structures(hybrid diamond-graphite phases)and their role in changing the conductivity.Nitrogen doping in a hy-drogen-rich plasma environment promotes the emergence of unique sp^(3)-sp^(2)bonding interfaces,where diamond grains are covalently integrated with graphitic domains,facilitating a structure-driven electronic transition.High-resolution transmis-sion electron microscopy and selected area electron diffraction reveal five-fold,six-fold and twelve-fold symmetries,along with an atypical{200}crystallographic reflection,confirming diaphite formation in 5%and 10%N-doped UNCD films,while high-er doping levels(15%and 20%)result in extensive graphitization.Raman spectroscopy tracks the evolution of sp^(2)bonding with increasing nitrogen content,while atomic force microscopy and X-ray diffraction indicate a consistent diamond grain size of~8 nm.Cryogenic electronic transport measurements reveal a conductivity increase from 8.72 to 708 S/cm as the nitrogen dop-ing level increases from 5%to 20%,which is attributed to defect-mediated carrier transport and 3D weak localization.The res-ulting conductivity is three orders of magnitude higher than previously reported.These findings establish a direct correlation between diaphite structural polymorphism and tunable electronic properties in nitrogen-doped UNCD films,offering new ways for defect-engineering diamond-based electronic materials.
基金Supported by the National Natural Science Foundation of China(62201293,62034003)the Open-Foundation of State Key Laboratory of Millimeter-Waves(K202313)the Jiangsu Province Youth Science and Technology Talent Support Project(JSTJ-2024-040)。
文摘In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model.
基金supported by the National Natural Science Foundation of China(Grant No.52206165)。
文摘Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This characteristic holds significant implications in the realm of novel satellite propulsion.Introducing a fraction of the electrical energy into energetic ionic liquid fuels,the thermal decomposition process is facilitated by reducing the apparent activation energy required,and electrical energy can trigger the electrochemical decomposition of ionic liquids,presenting a promising approach to enhance combustion efficiency and energy release.This study applied an external voltage during the thermal decomposition of 1-ethyl-3-methylimidazole nitrate([EMIm]NO_(3)),revealing the effective alteration of the activation energy of[EMIm]NO_(3).The pyrolysis,electrochemical decomposition,and electron assisted enhancement products were identified through Thermogravimetry-Differential scanning calorimetry-Fourier transform infrared-Mass spectrometry(TG-DSC-FTIR-MS)and gas chromatography(GC)analyses,elucidating the degradation mechanism of[EMIm]NO_(3).Furthermore,an external voltage was introduced during the combustion of[EMIm]NO_(3),demonstrating the impact of voltage on the combustion process.
基金Supported by the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0758)Shaanxi University of Science and Technology Research Launch Project(2020BJ-26)Doctoral Research Initializing Fund of Hebei University of Science and Technology,China(1181476).
文摘This paper discusses the influence of Sb/In ratio on the transport properties and crystal quality of the 200 nm InAs_(x)Sb_(1-x)thin film.The Sb content of InAs_(x)Sb_(1-x)thin film in all samples was verified by HRXRD of the symmetrical 004 reflections and asymmetrical 115 reflections.The calculation results show that the Sb component was 0.6 in the InAs_(x)Sb_(1-x)thin film grown under the conditions of Sb/In ratio of 6 and As/In ratio of 3,which has the highest electron mobility(28560 cm^(2)/V·s)at 300 K.At the same time,the influence ofⅤ/Ⅲratio on the transport properties and crystal quality of Al_(0.2)In_(0.8)Sb/InAs_(x)Sb_(1-x)quantum well heterostructures also has been investigated.As a result,the Al_(0.2)In_(0.8)Sb/InAs_(0.4)Sb_(0.6)quantum well heterostructure with a channel thickness of 30 nm grown under the conditions of Sb/In ratio of 6 and As/In ratio of 3 has a maximum electron mobility of 28300 cm^(2)/V·s and a minimum RMS roughness of 0.68 nm.Through optimizing the growth conditions,our samples have higher electron mobility and smoother surface morphology.
基金supported by the National Natural Science Foundation of China(62371465)Taishan Scholar Project of Shandong Province(ts201511020)the Chinese National Key Laboratory of Science and Technology on Information System Security(6142111190404).
文摘The syndrome a posteriori probability of the log-likelihood ratio of intercepted codewords is used to develop an algorithm that recognizes the polar code length and generator matrix of the underlying polar code.Based on the encoding structure,three theorems are proved,two related to the relationship between the length and rate of the polar code,and one related to the relationship between frozen-bit positions,information-bit positions,and codewords.With these three theorems,polar codes can be quickly reconstruced.In addition,to detect the dual vectors of codewords,the statistical characteristics of the log-likelihood ratio are analyzed,and then the information-and frozen-bit positions are distinguished based on the minimumerror decision criterion.The bit rate is obtained.The correctness of the theorems and effectiveness of the proposed algorithm are validated through simulations.The proposed algorithm exhibits robustness to noise and a reasonable computational complexity.
基金supported by the National Natural Science Foun-dation of China(Grant No.52206165)Key R&D Projects in Sichuan Province(Grant No.2022YFG0219)。
文摘Transient electronics is a versatile tool that finds applications in various fields,including medical biology,environmental protection,and data information security.In the context of data protection,the traditional passive degradation transient mode is being replaced by the active destruction mode,which features a short self-destruction time and provides greater resistance to recovery.This article presents an overview of recent progress in transient electronics,assessing the benefits and suitability of varying transient mechanisms.The article also analyses the influence of transient electronics on military security while emphasizing the advantages of implementing energetic materials.Besides,the article introduces energetic transient devices and evaluates their ability to support the autonomous operation of transient electronic devices.
文摘This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.
基金Projects(52275483,52075142,U22B2084)supported by the National Natural Science Foundation of ChinaProject(JZ2023HGPA0292)supported by the Fundamental Research Funds for the Central Universities of China。
文摘Gear flank modification is essential to reduce the noise generated in the gear meshing process,improve the gear transmission performance,and reduce the meshing impact.Aiming at the problem of solving the additional motions of each axis in the higher-order topology modification technique and how to accurately add the different movements expressed in the form of higher-order polynomials to the corresponding motion axes of the machine tool,a flexible higher-order gear topology modification technique based on an electronic gearbox is proposed.Firstly,a two-parameter topology gear surface equation and a grinding model of wheel grinding gears are established,and the axial feed and tangential feed are expressed in a fifth-order polynomial formula.Secondly,the polynomial coefficients are solved according to the characteristics of the point contact when grinding gears.Finally,an improved electronic gearbox model is constructed by combining the polynomial interpolation function to achieve gear topology modification.The validity and feasibility of the modification method based on the electronic gearbox are verified by experimental examples,which is of great significance for the machining of modification gears based on the continuous generative grinding method of the worm grinding wheel.
基金sponsored by National Natural Science Foundation of China (Grant No. 12405215)
文摘This paper introduced a compact high flux polarized neutron beam generator scheme,which used air as the working medium and had low energy consumption.The neutron beam generator adopted a linear three compartment configuration,sequentially using nitrogen nucleus tandem near range accelerated polarization target spallation nuclear reaction technology,neutron multiplication technology,neutron beam polarization and near range acceleration technology,neutron focusing and shooting control technology.Through design and equivalent verification,it has been proven that the total length of the device does not exceed 5 m,the effective range can reach several hundred kilometers,the neutron flux at the muzzle is not less than 10^(25) n·cm^(-2)·s^(-1),which attenuates to 10^(10) n·cm^(-2)·s^(-1) at a distance of several 100 km,and this flux can effectively strike the target.It can be used as a defensive directed energy weapon with high energy density and has broad application prospects.