Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried ...Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried depth H(25,40,55 cm),the horizontal distance L(30,40,60 cm)between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N(1,2,4).The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency(IWUE)of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75%of the field water capacity.The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28388.17 kg/hm2 and 16.83 kg/m3 in treatment T3,respectively.At the same L and N levels(T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22%and 31.48%,while IWUE is reduced by14.02%and 18.12%compared with T3,respectively.At the same H and N levels(T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level.Especially,when L was 30 cm(T3),the yield and IWUE were the highest.The same L and H levels(T3,T6,and T7)could promote the growth of apple trees when N was 2(T3).Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%.Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi.展开更多
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
Improving turfgrass drought resistance and save-water features are very important to solve water deficiency in turfgrass production and management. This research did some surveys of systematic literature review about ...Improving turfgrass drought resistance and save-water features are very important to solve water deficiency in turfgrass production and management. This research did some surveys of systematic literature review about turfgrass drought tolerance morphological characteristics, physiological characteristics and water use efficiency, and provided the detailed information for enhancing turfgrass drought resistant and water use efficiency in the future.展开更多
The laws of water consumption in corn,peanuts and millet on the semi-drought area of western Liaoning Province were studied through the FAO-Penman Monteith method and the water balance method.Among three corps,the amo...The laws of water consumption in corn,peanuts and millet on the semi-drought area of western Liaoning Province were studied through the FAO-Penman Monteith method and the water balance method.Among three corps,the amount of the day water demand,the whole growth period water demand and the soil water deficit of corn were all the largest.At the same time,its degree of agreement between the water demand and the level of precipitation was the worst,and its average in crop coefficient was larger.The amount of th...展开更多
Background:This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential(ΨPD)irrigation thresholds to increase agricultural water use efficiency(WUE)in cotton....Background:This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential(ΨPD)irrigation thresholds to increase agricultural water use efficiency(WUE)in cotton.To this end,a study was conducted near Tifton,Georgia under a manually-controlled,variable-rate lateral irrigation system using a Scholander pressure chamber approach to measure leaf water potential and impose varying irrigation scheduling treatments during the growing season.ΨPDthresholds were-0.4 MPa(T1),-0.5 MPa(T2),and-0.7 MPa(T3).A winter rye cover crop or conventional tillage were utilized for T1-T3 as well.Results:Reductions in irrigation of up to 10%were noted in this study for the driest threshold(-0.7 MPa)with no reduction in lint yield relative to the-0.4 MPa and-0.5 MPa thresholds.Drier conditions during flowering(2014)limited plant growth and node production,hastened cutout,and decreased yield and WUE relative to 2015.Conclusions:We conclude thatΨPDirrigation thresholds between-0.5 MPa and-0.7 MPa appear to be viable for use in aΨPDscheduling system with adequate yield and WUE for cotton production in the southeastern U.S.Rye cover positively impacted water potential at certain points throughout the growing season but not yield or WUE indicating the potential for rye cover crops to improve water use efficiency should be tested under longer-term production scenarios.展开更多
Different irrigation schemes have different effects on water consumption in rice production.However,few studies have been conducted on the water consumption processes between dry direct seeding rice and transplanting ...Different irrigation schemes have different effects on water consumption in rice production.However,few studies have been conducted on the water consumption processes between dry direct seeding rice and transplanting rice under different irrigation schemes.Water consumption process,water use efficiency and correlation effect of water consumption on yield under different planting models in rice production were investigated in northeast China in 2018.Seven treatments were implemented:drip irrigation dry direct seeding rice(DDSR),wet irrigation dry direct seeding rice(WDSR),flooded irrigation dry direct seeding rice(FDSR),transplanting flooded rice(TFR),controlled irrigation transplanting rice(CTR),intermittent irrigation transplanting rice(ITR)and wet irrigation transplanting rice(WTR).Among them,TFR was the control.The results showed that the peaks of the water consumption amount,intensity and its modulus coefficient of the seven treatments all appeared in the middle tillering and the jointing booting stages.The total water consumption amount(ET)and average water consumption intensity of DDSR,WDSR,FDSR and WTR were lower than those of TFR,CTR and ITR.The maximum water use efficiency of yield(WUEy)occurred in DDSR with a value of 3.8 kg·m^(-3).WUEy of DDSR,WDSR and FDSR were significantly higher than those of TFR,CTR and ITR.In the middle tillering and the heading and flowering stages,the water consumption amount of each treatment had a positive effect on yield formation,and the water consumption amount in the late tillering stage had a negative effect on yield formation.The relationship between ET and yield(Y)of dry direct seeding and transplanting planting models showed a quadratic function curve.ET of transplanting planting model had a significant positive impact on Y,and ET of dry direct seeding planting model had no impact on Y.DDSR had the least total water consumption of 199.8 mm·m^(-2),the lowest water consumption intensity of 2.0 mm·d^(-1) and the greatest water use efficiency of 3.8 kg·m^(-3),which suggested that DDSR had the most significant water saving effect.The combination of dry direct seeding planting model and drip irrigation scheme would be a good option for determining a water-saving rice planting model in northeast China.展开更多
The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI)...The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.展开更多
基金Supporting founds:National Key R&D Program(2016YFC0400204)Natural Science Foundation of China(51479161,51279157,51779205)。
文摘Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried depth H(25,40,55 cm),the horizontal distance L(30,40,60 cm)between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N(1,2,4).The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency(IWUE)of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75%of the field water capacity.The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28388.17 kg/hm2 and 16.83 kg/m3 in treatment T3,respectively.At the same L and N levels(T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22%and 31.48%,while IWUE is reduced by14.02%and 18.12%compared with T3,respectively.At the same H and N levels(T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level.Especially,when L was 30 cm(T3),the yield and IWUE were the highest.The same L and H levels(T3,T6,and T7)could promote the growth of apple trees when N was 2(T3).Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%.Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi.
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.
基金Supported by the National Nature Science Foundation (30871735 31272191)
文摘Improving turfgrass drought resistance and save-water features are very important to solve water deficiency in turfgrass production and management. This research did some surveys of systematic literature review about turfgrass drought tolerance morphological characteristics, physiological characteristics and water use efficiency, and provided the detailed information for enhancing turfgrass drought resistant and water use efficiency in the future.
基金Supported by the National Key Scientific and Technological Project,China (2006BAD29b06)
文摘The laws of water consumption in corn,peanuts and millet on the semi-drought area of western Liaoning Province were studied through the FAO-Penman Monteith method and the water balance method.Among three corps,the amount of the day water demand,the whole growth period water demand and the soil water deficit of corn were all the largest.At the same time,its degree of agreement between the water demand and the level of precipitation was the worst,and its average in crop coefficient was larger.The amount of th...
基金Funding was made available through the Georgia Cotton Commission and was funded with producer checkoff funds to improve cotton production within the state of Georgia。
文摘Background:This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential(ΨPD)irrigation thresholds to increase agricultural water use efficiency(WUE)in cotton.To this end,a study was conducted near Tifton,Georgia under a manually-controlled,variable-rate lateral irrigation system using a Scholander pressure chamber approach to measure leaf water potential and impose varying irrigation scheduling treatments during the growing season.ΨPDthresholds were-0.4 MPa(T1),-0.5 MPa(T2),and-0.7 MPa(T3).A winter rye cover crop or conventional tillage were utilized for T1-T3 as well.Results:Reductions in irrigation of up to 10%were noted in this study for the driest threshold(-0.7 MPa)with no reduction in lint yield relative to the-0.4 MPa and-0.5 MPa thresholds.Drier conditions during flowering(2014)limited plant growth and node production,hastened cutout,and decreased yield and WUE relative to 2015.Conclusions:We conclude thatΨPDirrigation thresholds between-0.5 MPa and-0.7 MPa appear to be viable for use in aΨPDscheduling system with adequate yield and WUE for cotton production in the southeastern U.S.Rye cover positively impacted water potential at certain points throughout the growing season but not yield or WUE indicating the potential for rye cover crops to improve water use efficiency should be tested under longer-term production scenarios.
基金Supported by the National Key Research and Development Program of China(2016YFC040010101)。
文摘Different irrigation schemes have different effects on water consumption in rice production.However,few studies have been conducted on the water consumption processes between dry direct seeding rice and transplanting rice under different irrigation schemes.Water consumption process,water use efficiency and correlation effect of water consumption on yield under different planting models in rice production were investigated in northeast China in 2018.Seven treatments were implemented:drip irrigation dry direct seeding rice(DDSR),wet irrigation dry direct seeding rice(WDSR),flooded irrigation dry direct seeding rice(FDSR),transplanting flooded rice(TFR),controlled irrigation transplanting rice(CTR),intermittent irrigation transplanting rice(ITR)and wet irrigation transplanting rice(WTR).Among them,TFR was the control.The results showed that the peaks of the water consumption amount,intensity and its modulus coefficient of the seven treatments all appeared in the middle tillering and the jointing booting stages.The total water consumption amount(ET)and average water consumption intensity of DDSR,WDSR,FDSR and WTR were lower than those of TFR,CTR and ITR.The maximum water use efficiency of yield(WUEy)occurred in DDSR with a value of 3.8 kg·m^(-3).WUEy of DDSR,WDSR and FDSR were significantly higher than those of TFR,CTR and ITR.In the middle tillering and the heading and flowering stages,the water consumption amount of each treatment had a positive effect on yield formation,and the water consumption amount in the late tillering stage had a negative effect on yield formation.The relationship between ET and yield(Y)of dry direct seeding and transplanting planting models showed a quadratic function curve.ET of transplanting planting model had a significant positive impact on Y,and ET of dry direct seeding planting model had no impact on Y.DDSR had the least total water consumption of 199.8 mm·m^(-2),the lowest water consumption intensity of 2.0 mm·d^(-1) and the greatest water use efficiency of 3.8 kg·m^(-3),which suggested that DDSR had the most significant water saving effect.The combination of dry direct seeding planting model and drip irrigation scheme would be a good option for determining a water-saving rice planting model in northeast China.
基金National Natural Science Foundation of China(51109102,51469010,51769010)the basic research project of Yunnan Province(2014FB130)key project of education department in Yunnan Province(2011Z035)
文摘The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.