The phenomenon of heat accumulation and transportation in the composite materials is a very typical and critical issue during drilling process.In this study,a three-dimensional temperature field prediction model is pr...The phenomenon of heat accumulation and transportation in the composite materials is a very typical and critical issue during drilling process.In this study,a three-dimensional temperature field prediction model is proposed using finite difference method,based on the partly homogenization hypothesis of material,to predict temperature field in the process of drilling unidirectional carbon fiber/epoxy(C/E)composites.According to the drilling feed motion,drilling process is divided into four stages to study the temperature distributing characteristics.The results show that the temperature distribution predicted by numerical study has a good agreement with the experimental results.The temperature increases with increasing the drilling depth,and the burn phenomena is observed due to the heat accumulation,especially at the drill exit.Due to the fiber orientation,an elliptical shape of the temperature field along the direction is found for both numerical and experimental studies of C/E composites drilling process.展开更多
This work presented the development and validation of an analytical method to predict the transient temperature field in the asphalt pavement.The governing equation for heat transfer was based on heat conduction radia...This work presented the development and validation of an analytical method to predict the transient temperature field in the asphalt pavement.The governing equation for heat transfer was based on heat conduction radiation and convection.An innovative time-dependent function was proposed to predict the pavement surface temperature with solar radiation and air temperature using dimensional analysis in order to simplify the complex heat exchange on the pavement surface.The parameters for the time-dependent pavement surface temperature function were obtained through the regression analysis of field measurement data.Assuming that the initial pavement temperature distribution was linear and the influence of the base course materials on the temperature of the upper asphalt layers was negligible,a close-form analytical solution of the temperature in asphalt layers was derived using Green's function.Finally,two numerical examples were presented to validate the model solutions with field temperature measurements.Analysis results show that the solution accuracy is in agreement with field data and the relative errors at a shallower depth are greater than those at a deeper one.Although the model is not sensitive to dramatic changes in climatic factors near the pavement surface,it is applicable for predicting pavement temperature field in cloudless days.展开更多
Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was...Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter.展开更多
The evolution of temperature field of the continual motion induction cladding and the depth of heat affected zone are studied in this study.A three-dimensional finite element model for the point type continual inducti...The evolution of temperature field of the continual motion induction cladding and the depth of heat affected zone are studied in this study.A three-dimensional finite element model for the point type continual induction cladding is established to investigate temperature distributions of fixed and motion induction cladding modes.The novel inductor is designed for cladding of curved surfaces.The modeling reliability is verified by the temperature measurements.The influence of process parameters on the maximum temperature and the generation and transfer of heat are studied.Quantitative calculation is performed to its melting rate to verify the temperature distribution and microstructures.The results show that a good metallurgical bond can be formed between the cladding layer and substrate.The melting rate gradually falls from the top of the cladding layer to the substrate,and the grain size in the substrate gradually rises.The heat affected zone is relatively small compared to integral heating.展开更多
To explore the spatial-temporal evolution law of rock mass temperature in high geothermal roadway during mechar^ical ventilation, a series of experiments were conducted based on the physical simulation test system of ...To explore the spatial-temporal evolution law of rock mass temperature in high geothermal roadway during mechar^ical ventilation, a series of experiments were conducted based on the physical simulation test system of thermal and humid environment in high geothermal roadway, which is a method independently developed by China University of Mining and Technology. The results indicate that during ventilation, the disturbed region of the temperature extends gradually from shallow area to deep area in the surrounding rock mass of the roadway. Meanwhile, the temperature increases as the exponential function from shallow area to deep, with steady decrease of the temperature gradient and heat flux. As the ventilation proceeds, the relationship between dimensionless temperature and dimensionless time approximately meets Hill function.展开更多
The paper introduces the concepts, classification and method of visualization in scientific computation. Visual C++ developing tool is used to compute surface grinding forces and grinding temperature field models. The...The paper introduces the concepts, classification and method of visualization in scientific computation. Visual C++ developing tool is used to compute surface grinding forces and grinding temperature field models. The three-dimensional entity model of workpiece is made with OpenGL tool, and the different colors on the workpiece entity show different value of temperature, so the visualization of grinding temperature field is realized. The temperature value of every points in grinding temperature field, the curves on surface temperature field and along depth direction are all given. The paper introduces method of visualization in scientific computation, and applies the visualization in scientific computation to the visualization of grinding temperature field. The displaying entity model of workpiece is made with OpenGL tool. The workpiece model is divided into griddings. The heat model is chosen and numerically computed, so the temperature values of every points can be attained. Three different view classes are used to display temperature data, temperature curves on the surface and along the depth direction, and the visualization distribution of three-dimensional temperature field. The visualization of grinding temperature is realized, and the display results of grinding temperature field can be dynamically changed by changing input parameters. Thus, a new path for researching grinding temperature field is developed.展开更多
To know the temperature status of track and wheels on tank,the finite element calculation of temperature field was implemented with ANSYS software.The detailed temperature distributions for road wheel,drive wheel,idle...To know the temperature status of track and wheels on tank,the finite element calculation of temperature field was implemented with ANSYS software.The detailed temperature distributions for road wheel,drive wheel,idle wheel and track loop were obtained.The effect of factors,such as tank speed,environment temperature,sun radiant energy,ground deformation resistant and tank load,on the temperature of road wheel was studied.The sensitivity analysis shows that the effect of tank load on the temperature is the most,and the effect of ground deformation resistant is the least.The temperature testing device for road wheel on tank was developed to perform the experiments in real time.The calculated temperatures are in accord well with the experimental values.展开更多
Based on the turbulence jet model, with respect to Ar-He mixture plasma gas injecting to ambient atmosphere, the temperature filed and velocity field under typical working conditions were investigated. Given the condi...Based on the turbulence jet model, with respect to Ar-He mixture plasma gas injecting to ambient atmosphere, the temperature filed and velocity field under typical working conditions were investigated. Given the conditions of I=900 A, FAr= 1.98 m^3/h, FEe=0.85 m^3/h, it is found that both the temperature and the velocity undergo a plateau region near the nozzle exit (0-10 mm) at the very first stage, then decrease abruptly from initial 13 543 K and 778.2 m/s to 4 000 K and 260.0 m/s, and finally decrease slowly again. Meanwhile, the radial temperature and radial velocity change relatively slow. The inner mechanism for such phenomena is due to the complex violent interaction between the high-temperature and high-velocity turbulent plasma jet and the ambient atmosphere. Compared with traditional methods, the initial working conditions can be directly related to the temperature and velocity fields of the plasma jet by deriving basic boundary conditions.展开更多
In the study,the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH_(2)powders.The experimental results showed that the introduction...In the study,the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH_(2)powders.The experimental results showed that the introduction of TiH_(2)powders could significantly increase the explosion temperature and fireball duration of emulsion explosive.When emulsion explosives were ignited,the average explosion temperature of pure emulsion explosive continuously decreased while emulsion explosives added with TiH_(2)powders increased at first and then decreased.When the content of TiH_(2)powders was 6 mass%,the explosion average temperature reached its maximum value of 3095 K,increasing by 43.7%as compared with that of pure emulsion explosive.In addition,the results of air blast experiment and explosion heat test showed that the variation trends of shock wave parameters,explosion heat and theoretical explosion temperature of emulsion explosives with different contents of TiH_(2)powders were basically consistent with that of explosion temperature measured by the two-color pyrometer technique.In conclusion,the two-color pyrometer technique would be conducive to the formula design of emulsion explosive by understanding the explosion temperature characteristics.展开更多
The temperature distribution in laminated beams underging thermal boundary conditions has been investigated.The thermal boundary conditions are general and include various combinations of prescribed heat fluxes and te...The temperature distribution in laminated beams underging thermal boundary conditions has been investigated.The thermal boundary conditions are general and include various combinations of prescribed heat fluxes and temperatures at the edges.An analytical solution of temperature for the laminated beam is present on the basis of the heat conduction theory in this paper.The proposed method is applicable to the beams with arbitrary thickness and layer numbers.Due to the complexity of the boundary conditions,the temperature field to be determined was considered from two sources.The first part was the temperature field from the complex temperature conditions at two edges of the laminated beam.The solution for the temperature of the first part was constructed to satisfy temperature boundary conditions at two edges.The second part was the temperature field from the upper and lower surface temperatures without taking account of the thermal conditions at two edges.In this part,the exact solution for the temperature was obtained based on the heat conduction theory.The convergence of the solution was examined by analyzing terms of Fourier series.The validity and feasibility of the proposed method was verified by comparing theoretical results with numerical results due to the equivalent single layer approach and the finite element method(FEM).The influences of surface temperatures,beam thicknesses,layer numbers and material properties with respects to the solution of the temperature field of the beam were investigated via a series of parametric studies.展开更多
The temperature distributions of a prestressed concrete box girder bridge under the effect of cold wave processes were analyzed. The distributions were found different from those under the effect of solar radiation or...The temperature distributions of a prestressed concrete box girder bridge under the effect of cold wave processes were analyzed. The distributions were found different from those under the effect of solar radiation or nighttime radiation cooling and should not be simplified as one dimensional. A temperature predicting model that can accurately predict temperatures over the cross section of the concrete box girder was developed. On the basis of the analytical model, a two-dimensional temperature gradient model was proposed and a parametric study that considered meteorological factors was performed. The results of sensitivity analysis show that the cold wave with shorter duration and more severe temperature drop may cause more unfavorable influences on the concrete box girder bridge. Finally, the unrestrained linear curvatures, self-equilibrating stresses and bending stresses when considering the frame action of the cross section, were derived from the proposed temperature gradient model and current code provisions, respectively. Then, a comparison was made between the value calculated against proposed model and several current specifications. The results show that the cold wave may cause more unfavorable effect on the concrete box girder bridge, especially on the large concrete box girder bridge. Therefore, it is necessary to consider the thermal effect caused by cold wave during the design stage.展开更多
Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for...Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.展开更多
Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation str...Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.展开更多
Necking defects have long troubled the application of cross-wedge rolling technology in aluminium alloy shaft parts.To accurately predict necking defects,new judgement conditions are established based on the thermal p...Necking defects have long troubled the application of cross-wedge rolling technology in aluminium alloy shaft parts.To accurately predict necking defects,new judgement conditions are established based on the thermal performance of 6082 aluminium alloy.The limit-sectional shrinkage without necking defects is achieved by combining theoretical calculation and finite-element model analysis,which couples heat transfer and deformation.In this paper,a 6082 aluminium alloy extruded rod with a 40 mm diameter rolled at a preheated temperature of 500℃and a rolling angular velocity of 1 rad/s is taken as an example.The simulation and experimental results show that necking defects do not occur on the rolled pieces if the sectional shrinkage is below the limit-sectional shrinkage but will occur when the sectional shrinkage is above it.The results prove that the prediction model of necking defects in cross-wedge rolling of 6082 aluminum alloy is feasible,and this research provides a theoretical basis for the qualified aluminum alloy shafts produced by the cross-wedge rolling.展开更多
Hydrogen diffusion coefficients of different regions in the welded joint of X80 pipeline steel were measured using the electro-chemical permeation technique. Using ABAQUS software, hydrogen diffusion in X80 pipeline s...Hydrogen diffusion coefficients of different regions in the welded joint of X80 pipeline steel were measured using the electro-chemical permeation technique. Using ABAQUS software, hydrogen diffusion in X80 pipeline steel welded joint was studied in consideration of the inhomogeneity of the welding zone, and temperature-dependent thermo-physical and mechanical properties of the metals. A three dimensional finite element model was developed and a coupled thermo-mechanical-diffusion analysis was performed. Hydrogen concentration distribution across the welded joint was obtained. It is found that the postweld residual hydrogen exhibits a non-uniform distribution across the welded joint. A maximum equivalent stress occurs in the immediate vicinity of the weld metal. The heat affected zone has the highest hydrogen concentration level, followed by the weld zone and the base metal.Simulation results are well consistent with theoretical analysis.展开更多
The casting nozzle location plays an important role in die casting. Improper location results in defects, such as cold shut, air cavity, shrinkage, etc. Therefore, it’s sure that the molten metal full fills the mould...The casting nozzle location plays an important role in die casting. Improper location results in defects, such as cold shut, air cavity, shrinkage, etc. Therefore, it’s sure that the molten metal full fills the mould cavity before it solidifies. And, it’s to be wished that no vortex occur during the filling process, because the vortex is a main source that induces gas entrapment. To get the high quality and performance product, the inlet and outlet locations must be set properly. This paper, an optimal design problem of nozzle and vent locations, which is constrained by nonlinear partial differential equations and boundary and initial conditions, is introduced to describe the location selection on die casting filling process. By numerical simulation, one can compare the filling time, flow pattern and temperature field at different inlet and outlet locations, then choose the most proper locations.展开更多
3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental...3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition(CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots.展开更多
A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared ...A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.展开更多
基金Projects(51475073,51605076,51875079)supported by the National Natural Science Foundation of ChinaProject(2017YFB1301701)supported by the National Key Research and Development Program of China
文摘The phenomenon of heat accumulation and transportation in the composite materials is a very typical and critical issue during drilling process.In this study,a three-dimensional temperature field prediction model is proposed using finite difference method,based on the partly homogenization hypothesis of material,to predict temperature field in the process of drilling unidirectional carbon fiber/epoxy(C/E)composites.According to the drilling feed motion,drilling process is divided into four stages to study the temperature distributing characteristics.The results show that the temperature distribution predicted by numerical study has a good agreement with the experimental results.The temperature increases with increasing the drilling depth,and the burn phenomena is observed due to the heat accumulation,especially at the drill exit.Due to the fiber orientation,an elliptical shape of the temperature field along the direction is found for both numerical and experimental studies of C/E composites drilling process.
基金Project(2012zzts019)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(201306370121)supported by State Scholarship Fund of ChinaProject(51248006)supported by the National Natural Science Foundation,China
文摘This work presented the development and validation of an analytical method to predict the transient temperature field in the asphalt pavement.The governing equation for heat transfer was based on heat conduction radiation and convection.An innovative time-dependent function was proposed to predict the pavement surface temperature with solar radiation and air temperature using dimensional analysis in order to simplify the complex heat exchange on the pavement surface.The parameters for the time-dependent pavement surface temperature function were obtained through the regression analysis of field measurement data.Assuming that the initial pavement temperature distribution was linear and the influence of the base course materials on the temperature of the upper asphalt layers was negligible,a close-form analytical solution of the temperature in asphalt layers was derived using Green's function.Finally,two numerical examples were presented to validate the model solutions with field temperature measurements.Analysis results show that the solution accuracy is in agreement with field data and the relative errors at a shallower depth are greater than those at a deeper one.Although the model is not sensitive to dramatic changes in climatic factors near the pavement surface,it is applicable for predicting pavement temperature field in cloudless days.
基金Project(51378503)supported by the National Natural Science Foundation of ChinaProject(2010G018-A-3)supported by Technology Research and Development Program of the Ministry of Railways,China
文摘Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter.
基金Project(51575415)supported by the National Natural Science Foundation of ChinaProject(2016CFA077)supported by the Natural Science Foundation of Hubei Province of ChinaProject(2018-YS-026)supported by the Excellent Dissertation Cultivation Funds of Wuhan University of Technology,China。
文摘The evolution of temperature field of the continual motion induction cladding and the depth of heat affected zone are studied in this study.A three-dimensional finite element model for the point type continual induction cladding is established to investigate temperature distributions of fixed and motion induction cladding modes.The novel inductor is designed for cladding of curved surfaces.The modeling reliability is verified by the temperature measurements.The influence of process parameters on the maximum temperature and the generation and transfer of heat are studied.Quantitative calculation is performed to its melting rate to verify the temperature distribution and microstructures.The results show that a good metallurgical bond can be formed between the cladding layer and substrate.The melting rate gradually falls from the top of the cladding layer to the substrate,and the grain size in the substrate gradually rises.The heat affected zone is relatively small compared to integral heating.
基金Project(2014-6121)supported by Fundamental Research Funds for the Central Universities,ChinaProject(51504236)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘To explore the spatial-temporal evolution law of rock mass temperature in high geothermal roadway during mechar^ical ventilation, a series of experiments were conducted based on the physical simulation test system of thermal and humid environment in high geothermal roadway, which is a method independently developed by China University of Mining and Technology. The results indicate that during ventilation, the disturbed region of the temperature extends gradually from shallow area to deep area in the surrounding rock mass of the roadway. Meanwhile, the temperature increases as the exponential function from shallow area to deep, with steady decrease of the temperature gradient and heat flux. As the ventilation proceeds, the relationship between dimensionless temperature and dimensionless time approximately meets Hill function.
文摘The paper introduces the concepts, classification and method of visualization in scientific computation. Visual C++ developing tool is used to compute surface grinding forces and grinding temperature field models. The three-dimensional entity model of workpiece is made with OpenGL tool, and the different colors on the workpiece entity show different value of temperature, so the visualization of grinding temperature field is realized. The temperature value of every points in grinding temperature field, the curves on surface temperature field and along depth direction are all given. The paper introduces method of visualization in scientific computation, and applies the visualization in scientific computation to the visualization of grinding temperature field. The displaying entity model of workpiece is made with OpenGL tool. The workpiece model is divided into griddings. The heat model is chosen and numerically computed, so the temperature values of every points can be attained. Three different view classes are used to display temperature data, temperature curves on the surface and along the depth direction, and the visualization distribution of three-dimensional temperature field. The visualization of grinding temperature is realized, and the display results of grinding temperature field can be dynamically changed by changing input parameters. Thus, a new path for researching grinding temperature field is developed.
文摘To know the temperature status of track and wheels on tank,the finite element calculation of temperature field was implemented with ANSYS software.The detailed temperature distributions for road wheel,drive wheel,idle wheel and track loop were obtained.The effect of factors,such as tank speed,environment temperature,sun radiant energy,ground deformation resistant and tank load,on the temperature of road wheel was studied.The sensitivity analysis shows that the effect of tank load on the temperature is the most,and the effect of ground deformation resistant is the least.The temperature testing device for road wheel on tank was developed to perform the experiments in real time.The calculated temperatures are in accord well with the experimental values.
基金Project (9140A12020306BQ0117) supported by the Commission of Science Technology and Industry for National DefenseProject ( 1040012040101) supported by the Excellent Young Teacher Foundation of Beijing Institute of Technology
文摘Based on the turbulence jet model, with respect to Ar-He mixture plasma gas injecting to ambient atmosphere, the temperature filed and velocity field under typical working conditions were investigated. Given the conditions of I=900 A, FAr= 1.98 m^3/h, FEe=0.85 m^3/h, it is found that both the temperature and the velocity undergo a plateau region near the nozzle exit (0-10 mm) at the very first stage, then decrease abruptly from initial 13 543 K and 778.2 m/s to 4 000 K and 260.0 m/s, and finally decrease slowly again. Meanwhile, the radial temperature and radial velocity change relatively slow. The inner mechanism for such phenomena is due to the complex violent interaction between the high-temperature and high-velocity turbulent plasma jet and the ambient atmosphere. Compared with traditional methods, the initial working conditions can be directly related to the temperature and velocity fields of the plasma jet by deriving basic boundary conditions.
基金supported by the National Natural Science Foundation of China(No.11972046)Outstanding Youth Project of Natural Science Foundation of Anhui Province(No.2108085Y02)+1 种基金Major Project of Anhui University Natural Science Foundation(No.KJ2020ZD30)Anhui University of Science and Technology Postgraduate Innovation Fund(No.2020CX2066)。
文摘In the study,the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH_(2)powders.The experimental results showed that the introduction of TiH_(2)powders could significantly increase the explosion temperature and fireball duration of emulsion explosive.When emulsion explosives were ignited,the average explosion temperature of pure emulsion explosive continuously decreased while emulsion explosives added with TiH_(2)powders increased at first and then decreased.When the content of TiH_(2)powders was 6 mass%,the explosion average temperature reached its maximum value of 3095 K,increasing by 43.7%as compared with that of pure emulsion explosive.In addition,the results of air blast experiment and explosion heat test showed that the variation trends of shock wave parameters,explosion heat and theoretical explosion temperature of emulsion explosives with different contents of TiH_(2)powders were basically consistent with that of explosion temperature measured by the two-color pyrometer technique.In conclusion,the two-color pyrometer technique would be conducive to the formula design of emulsion explosive by understanding the explosion temperature characteristics.
基金Projects(52108148,51878319,51578267)supported by the National Natural Science Foundation of ChinaProject(2021M701483)supported by the China Postdoctoral Research Funding Program+1 种基金Project(2021K574C)supported by the Jiangsu Postdoctoral Research Funding Program,ChinaProject(BK20190833)supported by the Natural Science Foundation of Jiangsu Province,China。
文摘The temperature distribution in laminated beams underging thermal boundary conditions has been investigated.The thermal boundary conditions are general and include various combinations of prescribed heat fluxes and temperatures at the edges.An analytical solution of temperature for the laminated beam is present on the basis of the heat conduction theory in this paper.The proposed method is applicable to the beams with arbitrary thickness and layer numbers.Due to the complexity of the boundary conditions,the temperature field to be determined was considered from two sources.The first part was the temperature field from the complex temperature conditions at two edges of the laminated beam.The solution for the temperature of the first part was constructed to satisfy temperature boundary conditions at two edges.The second part was the temperature field from the upper and lower surface temperatures without taking account of the thermal conditions at two edges.In this part,the exact solution for the temperature was obtained based on the heat conduction theory.The convergence of the solution was examined by analyzing terms of Fourier series.The validity and feasibility of the proposed method was verified by comparing theoretical results with numerical results due to the equivalent single layer approach and the finite element method(FEM).The influences of surface temperatures,beam thicknesses,layer numbers and material properties with respects to the solution of the temperature field of the beam were investigated via a series of parametric studies.
基金Project(08Y60) supported by the Traffic Science’s Research Planning of Jiangsu Province,China
文摘The temperature distributions of a prestressed concrete box girder bridge under the effect of cold wave processes were analyzed. The distributions were found different from those under the effect of solar radiation or nighttime radiation cooling and should not be simplified as one dimensional. A temperature predicting model that can accurately predict temperatures over the cross section of the concrete box girder was developed. On the basis of the analytical model, a two-dimensional temperature gradient model was proposed and a parametric study that considered meteorological factors was performed. The results of sensitivity analysis show that the cold wave with shorter duration and more severe temperature drop may cause more unfavorable influences on the concrete box girder bridge. Finally, the unrestrained linear curvatures, self-equilibrating stresses and bending stresses when considering the frame action of the cross section, were derived from the proposed temperature gradient model and current code provisions, respectively. Then, a comparison was made between the value calculated against proposed model and several current specifications. The results show that the cold wave may cause more unfavorable effect on the concrete box girder bridge, especially on the large concrete box girder bridge. Therefore, it is necessary to consider the thermal effect caused by cold wave during the design stage.
基金Project(NCET-05-0630) supported by Program for New Century Excellent Talents in University of China
文摘Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.
基金Project(2006BAE03A08)supported by the National Key Technology R&D Program of China
文摘Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.
基金Project(51975301)supported by the National Natural Science Foundation of ChinaProject(LZ17E050001)supported by the National Natural Science Foundation of Zhejiang Province of China。
文摘Necking defects have long troubled the application of cross-wedge rolling technology in aluminium alloy shaft parts.To accurately predict necking defects,new judgement conditions are established based on the thermal performance of 6082 aluminium alloy.The limit-sectional shrinkage without necking defects is achieved by combining theoretical calculation and finite-element model analysis,which couples heat transfer and deformation.In this paper,a 6082 aluminium alloy extruded rod with a 40 mm diameter rolled at a preheated temperature of 500℃and a rolling angular velocity of 1 rad/s is taken as an example.The simulation and experimental results show that necking defects do not occur on the rolled pieces if the sectional shrinkage is below the limit-sectional shrinkage but will occur when the sectional shrinkage is above it.The results prove that the prediction model of necking defects in cross-wedge rolling of 6082 aluminum alloy is feasible,and this research provides a theoretical basis for the qualified aluminum alloy shafts produced by the cross-wedge rolling.
基金Project(BK2011258)supported by the Natural Science Foundation of Jiangsu Province,China
文摘Hydrogen diffusion coefficients of different regions in the welded joint of X80 pipeline steel were measured using the electro-chemical permeation technique. Using ABAQUS software, hydrogen diffusion in X80 pipeline steel welded joint was studied in consideration of the inhomogeneity of the welding zone, and temperature-dependent thermo-physical and mechanical properties of the metals. A three dimensional finite element model was developed and a coupled thermo-mechanical-diffusion analysis was performed. Hydrogen concentration distribution across the welded joint was obtained. It is found that the postweld residual hydrogen exhibits a non-uniform distribution across the welded joint. A maximum equivalent stress occurs in the immediate vicinity of the weld metal. The heat affected zone has the highest hydrogen concentration level, followed by the weld zone and the base metal.Simulation results are well consistent with theoretical analysis.
文摘The casting nozzle location plays an important role in die casting. Improper location results in defects, such as cold shut, air cavity, shrinkage, etc. Therefore, it’s sure that the molten metal full fills the mould cavity before it solidifies. And, it’s to be wished that no vortex occur during the filling process, because the vortex is a main source that induces gas entrapment. To get the high quality and performance product, the inlet and outlet locations must be set properly. This paper, an optimal design problem of nozzle and vent locations, which is constrained by nonlinear partial differential equations and boundary and initial conditions, is introduced to describe the location selection on die casting filling process. By numerical simulation, one can compare the filling time, flow pattern and temperature field at different inlet and outlet locations, then choose the most proper locations.
基金Project(2012AA03A505)supported by the High-Tech Research and Development Program of ChinaProject(51474023)supported by the National Natural Science Foundation of China
文摘3D microstructures of Fe–6.5%Si(mass fraction) alloys prepared under different cooling conditions were simulated via finite element-cellular automaton(CAFE) method. The simulated results were compared to experimental results and found to be in accordance. Variations in the temperature field and solid-liquid region, which plays important roles in determining solidification structures, were also examined under various cooling conditions. The proposed model was utilized to determine the effects of Gaussian distribution parameters to find that the lower the mean undercooling, the higher the equiaxed crystal zone ratio; also, the larger the maximum nucleation density, the smaller the grain size. The influence of superheat on solidification structure and columnar to equiaxed transition(CET) in the cast ingot was also investigated to find that decrease in superheat from 52 K to 20 K causes the equiaxed crystal zone ratio to increase from 58.13% to 65.6%, the mean gain radius to decrease from 2.102 mm to 1.871 mm, and the CET to occur ahead of schedule. To this effect, low superheat casting is beneficial to obtain finer equiaxed gains and higher equiaxed dendrite zone ratio in Fe–6.5%Si alloy cast ingots.
基金Project(50977064) supported by the National Natural Science Foundation of China
文摘A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.