期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced Ion Sampling Techniques for In-situ Neutral Gas and Low-energy Ions Exploration of Main-belt Comet
1
作者 WANG Xinyue ZHANG Aibing +4 位作者 SU Bin DU Dan KONG Linggao TIAN Zheng ZHENG Xiangzhi 《空间科学学报》 北大核心 2025年第3期749-760,共12页
One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific object... One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water. 展开更多
关键词 neutral gas low energy ions sampling techniques ion sampling techniques investigate space environment main belt comet gas ion analyzer gia situ measurement
在线阅读 下载PDF
Over-sampling algorithm for imbalanced data classification 被引量:13
2
作者 XU Xiaolong CHEN Wen SUN Yanfei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1182-1191,共10页
For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic... For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value. 展开更多
关键词 imbalanced data density-based spatial clustering of applications with noise(DBSCAN) synthetic minority over sampling technique(SMOTE) over-sampling.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部