期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Enhancement of Piezoelectric Properties in CaBi_(4)Ti_(4)O_(15)-based Ceramics through Bi^(3+) Self-doping Strategy
1
作者 ZHOU Yangyang ZHANG Yanyan +4 位作者 YU Ziyi FU Zhengqian XU Fangfang LIANG Ruihong ZHOU Zhiyong 《无机材料学报》 北大核心 2025年第6期719-728,共10页
High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)... High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)O_(15)(CBT)high-temperature piezoelectric ceramics,with high Curie temperature(TC),are the key components for piezoelectric vibration sensors operating at temperatures exceeding 500℃.However,their low piezoelectric coefficient(d_(33))greatly limits their high-temperature applications.In this work,a novel Bi^(3+)self-doping strategy was employed to enhance the piezoelectric performance of CBT ceramics.The enhancement is attributed to an increase in the number of grain boundaries,providing more sites for space charge accumulation and promoting formation of space charge polarization.Furthermore,given that space charge polarization predominantly occurs at low frequencies,dielectric temperature spectra at different frequencies were used to elucidate the mechanism by which space charge polarization enhances piezoelectric properties of CBT ceramics.Excellent overall performance was achieved for the CBT-based high-temperature piezoelectric ceramics.Among them,TC reached 778℃,d_(33) increased by more than 30%,reaching 20.1 pC/N,and the electrical resistivity improved by one order of magnitude(reaching 6.33×10^(6)Ω·cm at 500℃).These advancements provide a key functional material with excellent performance for practical applications of piezoelectric vibration sensors at 500℃and above. 展开更多
关键词 high-temperature piezoelectric ceramic bismuth layer structure SELF-DOPING space charge polarization oxygen vacancy
在线阅读 下载PDF
BiScO_(3)-BiFeO_(3)-PbTiO_(3)-BaTiO_(3) high-temperature piezoelectric ceramic and its application on high-temperature acoustic emission sensor 被引量:2
2
作者 FENG Chao FENG Yun-yun +4 位作者 FAN Meng-jia GENG Chao-hui LIN Xiu-juan YANG Chang-hong HUANG Shi-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3747-3756,共10页
Piezoelectric ceramic based high-temperature acoustic emission(AE)sensor is required urgently in the structural health monitoring of high-temperature fields.In this research,a series of 0.45(BiSc_(x)O_(3)-BiFe_(1-x)O_... Piezoelectric ceramic based high-temperature acoustic emission(AE)sensor is required urgently in the structural health monitoring of high-temperature fields.In this research,a series of 0.45(BiSc_(x)O_(3)-BiFe_(1-x)O_(3))-0.48PbTiO_(3)-0.07BaTiO_(3)(BSc_(x)Fe_(1-x)-PT-BT,n(Sc)/n(Fe)=0.4/0.6-0.6/0.4)ceramics with both high Curie temperature and large piezoelectric constant were presented.The structure and electrical properties of BSc_(x)Fe_(1-x)-PT-BT ceramics as a function of n(Sc)/n(Fe)have been systematically investigated.All the ceramics possess a perovskite structure,and the phase approaches from the rhombohedral toward the tetragonal phase with the decrease of n(Sc)/n(Fe).The BSc_(0.5)Fe_(0.5)-PT-BT and BSc_(0.5)Fe_(0.5)-PT-BT piezoelectric ceramics exhibit good piezoelectricity(d_(33)=250-281 pC/N),high Curie temperature(T_(C)=430-450℃)and excellent temperature stability.These improvements are greatly attributed to the balance between rhombohedral and tetragonal phase near morphotropic phase boundary with dense microstructure of ceramics.AE sensor based BSc_(0.5)Fe_(0.5)-PT-BT piezoelectric ceramic was designed,prepared and tested.The high-temperature stability of AE sensor was characterized through pencil-lead breaking with in situ high-temperature test.The noise of AE sensor is less than 40 dB,and the acoustic signal is up to 90 dB at 200℃.As a result,AE sensors based on BSc_(x)Fe_(1-x)-PT-BT piezoelectric ceramics are expected to be applied into the structural health monitoring of high temperature fields. 展开更多
关键词 piezoelectric ceramics high temperature morphotropic phase boundary phase transition acoustic emission sensor
在线阅读 下载PDF
Predicting the electromechanical properties of small caliber projectile impact igniter using PZT dynamic damage constitutive model considering crack propagation 被引量:1
3
作者 Rui-zhi Wang Zhi-qiang Wang +5 位作者 En-ling Tang Lei Li Guo-lai Yang Chun Cheng Li-ping He Ya-fei Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期121-135,共15页
Block piezoelectric ceramics(PZTs)are often used in impact igniters to provide activation energy for electric initiators.Under the action of strong impact stress,PZTs release electric energy accompanied by crack initi... Block piezoelectric ceramics(PZTs)are often used in impact igniters to provide activation energy for electric initiators.Under the action of strong impact stress,PZTs release electric energy accompanied by crack initiation,propagation and crushing.At present,the electrical output performance of PZTs in projectile is usually calculated by quasi-static piezoelectric equation without considering the dynamic effect caused by strong impact and the influence of crack propagation on material properties.So the ignition parameters are always not accurately predicted.To tackle this,a PZT dynamic damage constitutive model considering crack propagation is established based on the dynamic impact test and the crack propagation theory of brittle materials.The model is then embedded into the ABAQUS subroutine and used to simulate the electromechanical response of the impact igniter during the impact of a small caliber projectile on the target.Meanwhile,the experiments of projectile with impact igniter impact on the target are carried out.The comparison between experimental and numerical simulation results show that the established dynamic damage model can effectively predict the dynamic electromechanical response of PZTs in the missile service environment. 展开更多
关键词 piezoelectric ceramics IMPACT IGNITER Dynamic damage constitutive model Electromechanical response
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部