期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A review of carbon-based hybrid materials for supercapacitors
1
作者 Theodore Azemtsop Manfo Hannu Laaksonen 《新型炭材料(中英文)》 北大核心 2025年第1期81-110,共30页
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti... Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors. 展开更多
关键词 Carbon-based hybrid material Structure design Electrode material Specific capacitance SUPERCAPACITORS
在线阅读 下载PDF
A new inorganic-organic hybrid material as consolidation material for Jinsha archaeological site of Chengdu
2
作者 万涛 林金辉 《Journal of Central South University》 SCIE EI CAS 2014年第2期487-492,共6页
An organic-inorganic epoxy-silica-acrylate(ESA) hybrid material was used for the consolidation of Jinsha archaeological site of Chengdu in China.The hybrid materials have multiple functional groups,such as anhydride,e... An organic-inorganic epoxy-silica-acrylate(ESA) hybrid material was used for the consolidation of Jinsha archaeological site of Chengdu in China.The hybrid materials have multiple functional groups,such as anhydride,epoxy,hydroxyl and carboxyl,which can form networks at room temperature and result in an enhanced chemical and water resistance of the consolidated soil.With increasing of TEOS content,the hybrid materials keep colorless with only some reduction of transparency,while the hybrid materials obviously turn from moderate yellowish to brown yellow with the increase of the epoxy resin(EOR) content after 120 min UV irradiation.SEM observation indicates that the hybrid soil consolidation materials can effectively penetrate into the soil substrate,fill up most of the pores,decrease the area porosity and consolidate the Jinsha archaeological soil.The consolidation performances are in the sequence:ESA > K2SiO4(PS) > tetraethyl orthosilicate(TEOS). 展开更多
关键词 hybrid materials earthen archaeological site SOL-GEL CONSOLIDATION
在线阅读 下载PDF
Nitrogen⁃doped 3D graphene⁃carbon nanotube network for efficient lithium storage
3
作者 XIE Jie XU Hongnan +3 位作者 LIAO Jianfeng CHEN Ruoyu SUN Lin JIN Zhong 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第10期1840-1849,共10页
A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor... A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1). 展开更多
关键词 GRAPHENE carbon nanotube hybrid material ANODE lithium⁃ion battery
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部