The PE-Al-PE composite pipe is a multiplayer pipe t hat is composed of PE (polyethylene) and Aluminum. Al is inlayed the inner PE la yer and the outer PE layer. In the producing technological process of this kind of p...The PE-Al-PE composite pipe is a multiplayer pipe t hat is composed of PE (polyethylene) and Aluminum. Al is inlayed the inner PE la yer and the outer PE layer. In the producing technological process of this kind of pipe the bend forming of Al belt to tube is very important. It is the bend fo rming dies that are used in the process of producing PE-Al-PE pipe that is stu died in this article. To make a elaborate division, these dies can be classified as bending dies and forming dies here. In this paper, the designation of bendin g dies and forming dies that are used in producing technological process of PE- Al-PE pipe is put forward. The process starts from a coil of Al belt, in the ac tion of pulling force, passes between several bending dies to change its shape. The first step is to change Al belt to U shape. A couple of rolling wheels can b e used to shape the Al belt. The Al belt goes between the two rolling wheels, dr ives the wheels, at the same time is formed as the shape of the rolling wheels. Considering of the factors such as spring of the bend Al belt, frictional force between Al and the die, bending force needed to bend Al belt, etc., it must be s haped gradually into U by several dies. The designation of these dies has been g iven in this paper. The next step is to forming the U shape into a circle. The U shape Al belt goes through a round that is formed with a four-roller die, and then is shaped to a circle. Because the latter procedure requires the Al circle has a laminated area to be ultrasonic welded, this die must be designed to let t he two edges of the circle belt to be piled up to a definite width. But except f or the laminated area the other of the circle should be as round as possible. So the four rollers are not the same. The calculation and designation of the rolle rs of this four-roller die has also been given. The designation of the roller w hich is supposed to leave a gap to let the two edges of the circle belt to be pi led up is to make a fine rotation of an original circle. Then calculates the cen ter of the rotated arc and defines the arc completely. The designation method of the other rollers has also been given in this paper.展开更多
As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transportin...As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system.展开更多
文摘The PE-Al-PE composite pipe is a multiplayer pipe t hat is composed of PE (polyethylene) and Aluminum. Al is inlayed the inner PE la yer and the outer PE layer. In the producing technological process of this kind of pipe the bend forming of Al belt to tube is very important. It is the bend fo rming dies that are used in the process of producing PE-Al-PE pipe that is stu died in this article. To make a elaborate division, these dies can be classified as bending dies and forming dies here. In this paper, the designation of bendin g dies and forming dies that are used in producing technological process of PE- Al-PE pipe is put forward. The process starts from a coil of Al belt, in the ac tion of pulling force, passes between several bending dies to change its shape. The first step is to change Al belt to U shape. A couple of rolling wheels can b e used to shape the Al belt. The Al belt goes between the two rolling wheels, dr ives the wheels, at the same time is formed as the shape of the rolling wheels. Considering of the factors such as spring of the bend Al belt, frictional force between Al and the die, bending force needed to bend Al belt, etc., it must be s haped gradually into U by several dies. The designation of these dies has been g iven in this paper. The next step is to forming the U shape into a circle. The U shape Al belt goes through a round that is formed with a four-roller die, and then is shaped to a circle. Because the latter procedure requires the Al circle has a laminated area to be ultrasonic welded, this die must be designed to let t he two edges of the circle belt to be piled up to a definite width. But except f or the laminated area the other of the circle should be as round as possible. So the four rollers are not the same. The calculation and designation of the rolle rs of this four-roller die has also been given. The designation of the roller w hich is supposed to leave a gap to let the two edges of the circle belt to be pi led up is to make a fine rotation of an original circle. Then calculates the cen ter of the rotated arc and defines the arc completely. The designation method of the other rollers has also been given in this paper.
基金Project(50975290) supported by the National Natural Science Foundation of ChinaProject(2011QNZT057) supported by the Basic Operational Cost of Special Research Funding of Central Universities in ChinaProject(11JJ5028) supported by Hunan Provincial Natural Science Foundation,China
文摘As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system.