期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Natural frequencies analysis of a composite beam consisting of Euler-Bernoulli and Timoshenko beam segments alternately 被引量:2
1
作者 PENG Li-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期625-636,共12页
Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-le... Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model. 展开更多
关键词 natural frequency Euler-bernoulli beam Timoshenko beam hybrid beam unit composite beam
在线阅读 下载PDF
Mechanical performance of shear studs and application in steel-concrete composite beams 被引量:1
2
作者 朱志辉 张磊 +3 位作者 柏宇 丁发兴 刘劲 周政 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2676-2687,共12页
This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element(FE) mo... This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element(FE) model and analyze the behavior of push-out specimens. The modeling results are in good agreement with the experimental results. Based on parametrical analysis using the validated FE approaches, the effects of important design parameters, such as the diameter, number, length to diameter ratio, and yield strength of studs, concrete strength and steel transverse reinforcement ratio, on the load-slip relationship at the interface of composite beams are discussed. In addition, a simplified approach to model studs is developed using virtual springs with an equivalent stiffness. This approach is demonstrated to be able to predict the load-displacement response and ultimate bearing capacity of steel-concrete composite beams. The predicted results show satisfactory agreement with experimental results from the literature. 展开更多
关键词 shear studs push-out test load-slip relationship ultimate bearing capacity steel-concrete composite beams
在线阅读 下载PDF
Fatigue properties of special kind of reinforced concrete composite beams
3
作者 胡铁明 黄承逵 陈小锋 《Journal of Central South University》 SCIE EI CAS 2010年第1期142-149,共8页
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa... The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam. 展开更多
关键词 steel fiber reinforced self-stressing concrete composite beam constructional bar bonding interface FATIGUE
在线阅读 下载PDF
Parametric Study on Composite Beams with Web Openings Fire Protected with Reactive Intumescent Coating
4
作者 GUO Shixiong YUAN Jifeng 《防灾减灾工程学报》 CSCD 北大核心 2016年第3期331-336,共6页
When service ducts and cables are required to pass through the structural beams,it is a common practical solution to use composite beams with rectangular or circular openings.The fire safety standards in many countrie... When service ducts and cables are required to pass through the structural beams,it is a common practical solution to use composite beams with rectangular or circular openings.The fire safety standards in many countries have recommended design methods for composite beams without openings,while the design method for composite beams with web openings is not addressed yet.Due to the complicated distribution of temperature and stress around the openings in the web of the steel beam,extra complexity has been introduced in determination of the structural capability of the beam and the failure mode in fire.These failure modes generally occur at lower limiting temperatures than the solid beam with same size.It is recognized that the thickness of a reactive coating required to provide a given fire resistance to a composite beam with web openings is affected by the beam’s web thickness,opening configuration,the degree of the beam asymmetry and the structural utilization factor,as well as the nature of the proprietary fire protection itself.Therefore it is necessary that such beams are structurally evaluated taking into account all possible modes of structural failure under both ambient and fire conditions.It is also necessary for additional thermal data to be measured around the web openings and on the web posts from fire tests.The additional thermal data will be used in conjunction with a structural model to determine limiting temperatures of beams with web openings.Steel Construction Institute(SCI)has produced a structural analysis model referenced as report RT1356,which divides a composite beam with web openings into different stress blocks,and then analyses the global bending,vertical shear,local Vierendeel bending,web-post buckling etc.The Association for Specialist Fire Protection(ASFP)recommended the test protocol in the Yellow Book,to determine the temperature distribution around the openings and web post.This paper will discuss a series of fire tests having been carried out in the laboratory of EXOVA Warringtonfire to establish temperature distribution in composite beams with web openings.Test result shows that the distribution of temperature is product specific and strongly affected by opening configuration and opening distance.EXOVA Warringtonfire has also developed a sophisticated calculator,ThermCalc,for analyzing temperature and structural following the method presented in RT1356.Using ThermCalc,parametric study has been carried out,and the effect of load utilization factor,opening size,opening distance,slab depth,decking configuration etc.was investigated. 展开更多
关键词 fire safety composite beam web opening cellular beam
在线阅读 下载PDF
Research on fracture characteristics and support mechanism of shallow buried double-soft composite roof
5
作者 ZHANG Wei ZHANG Chun-wang +2 位作者 GUO Wei-yao ZHANG Bao-liang LIU Wan-rong 《Journal of Central South University》 2025年第5期1838-1854,共17页
Affected by the geological characteristics of coal bearing strata in western mining areas of China,the double soft composite roof has low strength and poor integrity,which is prone to induce disasters such as large de... Affected by the geological characteristics of coal bearing strata in western mining areas of China,the double soft composite roof has low strength and poor integrity,which is prone to induce disasters such as large deformation and roof collapse.Four-point bending tests were conducted on anchored double-layer rock beams with different pre tightening force and upper/lower rock strength ratios(Ⅰ/Ⅱ)based on the digital speckle correlation method(DSCM).The research results indicate that the instability process of anchored roof can be divided into stages of elastic deformation,crack propagation,alternating fracture,and failure collapse.The proportion of crack propagation and alternating fracture processes increased with the increase of pre-tightening force and Ⅰ/Ⅱ.The pre-tightening force can suppress the sliding of the upper/lower rock interface,and delay the initiation and propagation of cracks.As Ⅰ/Ⅱ increases,the failure mode changes from tensile failure steel strip to shear failure anchor rod.Steel strip can improve the continued bearing effect of anchored roof during crack propagation and alternating fracture processes. 展开更多
关键词 double-soft composite roof anchored composite beams anchored rock fracture pre-tightening force crack propagation
在线阅读 下载PDF
Closed-form solution for shear lag effects of steel-concrete composite box beams considering shear deformation and slip 被引量:10
6
作者 周旺保 蒋丽忠 +1 位作者 刘志杰 刘小洁 《Journal of Central South University》 SCIE EI CAS 2012年第10期2976-2982,共7页
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs... Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant. 展开更多
关键词 steel-concrete composite box beam shear lag effect shear deformation SLIP closed-form solution
在线阅读 下载PDF
A new 3-D element formulation on displacement of steel-concrete composite box beam 被引量:2
7
作者 周凌宇 余志武 贺桂超 《Journal of Central South University》 SCIE EI CAS 2013年第5期1354-1360,共7页
Slip of a composite box beam may reduce its stiffness, enlarge its deformation and affect its performance. In this work, the governing differential equations and boundary conditions of composite box beams were establi... Slip of a composite box beam may reduce its stiffness, enlarge its deformation and affect its performance. In this work, the governing differential equations and boundary conditions of composite box beams were established. Analytic solutions of combined differential equations were also established. Partial degree of freedom was adopted to establish a new FEA element of three-dimensional beam, taking into account the slip effect. Slip and its first-order derivative were introduced into the nodes of composite box beams as generalized degree of freedom. Stiffness matrix and load array of beam elements were established. A three-dimensional nonlinear calculation program was worked out. The results show that the element is reliable and easy to divide and is suitable for special nonlinear analysis of large-span composite box beams. 展开更多
关键词 steel-concrete composite box beam shear deformation slip effect variational method finite beam element method
在线阅读 下载PDF
Distortional buckling analysis of steel-concrete composite box beams considering effect of stud rotational restraint under hogging moment
8
作者 JIANG Li-zhong NIE Lei-xin +2 位作者 ZHOU Wang-bao WU Xia LIU Li-li 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期3158-3170,共13页
Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are ess... Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are essential factors affecting SCCBB distortional buckling.Based on the stationary potential energy principle,the analytical expressions for the rotational restraint stiffness(RRS)of the web upper edge as well as the RRS and the lateral restraint stiffness(LRS)of the bottom plate were derived.Also,the SCCBB critical moment formula under the hogging moment was derived.Using twenty specimens,the theoretical calculation method is compared with the finite-element method.Results indicate that the theoretical calculation method can effectively and accurately reflect the restraint effect of the studs,top steel flange,and other factors on the bottom plate.Both the RRS and the LRS have a nonlinear coupling relationship with the external loads and the RRS of the web’s upper edge.Under the hogging moment,the RRS of the web upper edge has a certain influence on the SCCBB distortional buckling critical moment.With increasing RRS of the web upper edge,the SCCBB critical moment increases at first and then tends to be stable. 展开更多
关键词 steel-concrete composite box beams distortional buckling elastic rotational restraint boundary lateral restraint stiffness buckling moment
在线阅读 下载PDF
Experimental and numerical study on mechanical behavior of rock beam fracture under unloading with different thicknesses and spans in deep mining working face
9
作者 SUN Xiao-ming JIANG Ming +1 位作者 ZHAO Wen-chao MIAO Cheng-yu 《Journal of Central South University》 2025年第7期2570-2592,共23页
The stability of the roof in coal mining is crucial for ensuring safe extraction.Studying the mechanical behavior of rock beams under various conditions is essential for improving coal mining safety.However,research o... The stability of the roof in coal mining is crucial for ensuring safe extraction.Studying the mechanical behavior of rock beams under various conditions is essential for improving coal mining safety.However,research on the dynamic response of rock beams under sudden unloading remains limited.This study utilized a self-developed bidirectional loading and unilateral unloading test system to simulate how sudden lower strata subsidence induces the fracture of upper hard rock beams.Bottom unloading experiments were performed on rock beams with varying thicknesses and spans.The experiments recorded surface crack development and internal damage evolution using high speed photography and acoustic emission monitoring.The results show that rock beams experience multiple stress reductions after unloading,with the largest reduction occurring in the first stage.Flexural deformation was observed,becoming more pronounced as the thickness-span ratio decreased.Greater thickness increased shear cracks and crack expansion angles,while larger spans promoted tensile cracks,arched crack formation,and notable rock spalling.Acoustic emission analysis showed that signal count and energy increased with thickness and span.Finally,discrete element numerical simulations revealed the critical controlling role of harder rock strata in rock beam failure:when the harder strata are at the top,cracks are sharp,and shear failure is more likely;when they are at the bottom,the overall failure range expands,and cracks tend to form arches.These findings improve the understanding of dynamic rock beam fracture under sudden unloading and offer theoretical guidance for roof stability control in deep mining. 展开更多
关键词 roof rock beam bottom unloading thickness and span tensile crack composite rock beam harder rock strata
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部