The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses...The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering.展开更多
[Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under c...[Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under challenging conditions,such as strong light exposure and weed interference.The aims are to develop an effective crop line extraction method by combining YOLOv8-G,Affinity Propagation,and the Least Squares method to enhance detection accuracy and performance in complex field environments.[Methods]The proposed method employs machine vision techniques to address common field challenges.YOLOv8-G,an improved object detection algorithm that combines YOLOv8 and Ghost‐NetV2 for lightweight,high-speed performance,was used to detect the central points of crops.These points were then clustered using the Affinity Propagation algorithm,followed by the application of the Least Squares method to extract the crop lines.Comparative tests were conducted to evaluate multiple backbone networks within the YOLOv8 framework,and ablation studies were performed to validate the enhancements made in YOLOv8-G.[Results and Discussions]The performance of the proposed method was compared with classical object detection and clustering algorithms.The YOLOv8-G algorithm achieved average precision(AP)values of 98.22%,98.15%,and 97.32%for corn detection at 7,14,and 21 days after emergence,respectively.Additionally,the crop line extraction accuracy across all stages was 96.52%.These results demonstrate the model's ability to maintain high detection accuracy despite challenging conditions in the field.[Conclusions]The proposed crop line extraction method effectively addresses field challenges such as lighting and weed interference,enabling rapid and accurate crop identification.This approach supports the automatic navigation of agricultural machinery,offering significant improvements in the precision and efficiency of field operations.展开更多
To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to impleme...To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze the periodicity of hot rolling and find three sensitive parameters to strip thickness, which were used to undertake polynomial curve fitting prediction based on least square respectively, and preliminary prediction results were obtained. Then, D_S evidence theory was used to reconstruct the prediction results under different parameters, in which basic probability assignment(BPA) was the key and the proposed contribution rate calculated using grey relational degree was regarded as BPA, which realizes BPA selection objectively. Finally, from this distribution, future strip thickness trend was inferred. Experimental results clearly show the improved prediction accuracy and stability compared with other prediction models, such as GM(1,1) and the weighted average prediction model.展开更多
In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fi...In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fixed point type iterative algorithm for unknown parameters are presented, and the least square estimates of the parameters are also proposed. Meanwhile, confidence intervals of model parameters are constructed by using the asymptotic theory and bootstrap technique. Numerical illustration is given to investigate the performance of our methods.展开更多
Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support v...Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine(LS-SVM) technique was proposed.The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters,and an LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters.The proposed approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the permanent ship lock within the Three Gorges project in China.The results indicate that the proposed method presents the uncertainties in the geomechanical parameters reasonably well,and also improves the understanding that the monitored information is important in real projects.展开更多
By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of ...By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of the identification parameters is given. In order to decrease the asymptotic error, a corrector of maximum likelihood (CML) estimation with its recursive algorithm is given. It has been proved that the corrector has smaller asymptotic error than the least square methods. A simulation example shows that the corrector of maximum likelihood estimation is of higher approximating precision to the true parameters than the least square methods.展开更多
文摘The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering.
文摘[Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under challenging conditions,such as strong light exposure and weed interference.The aims are to develop an effective crop line extraction method by combining YOLOv8-G,Affinity Propagation,and the Least Squares method to enhance detection accuracy and performance in complex field environments.[Methods]The proposed method employs machine vision techniques to address common field challenges.YOLOv8-G,an improved object detection algorithm that combines YOLOv8 and Ghost‐NetV2 for lightweight,high-speed performance,was used to detect the central points of crops.These points were then clustered using the Affinity Propagation algorithm,followed by the application of the Least Squares method to extract the crop lines.Comparative tests were conducted to evaluate multiple backbone networks within the YOLOv8 framework,and ablation studies were performed to validate the enhancements made in YOLOv8-G.[Results and Discussions]The performance of the proposed method was compared with classical object detection and clustering algorithms.The YOLOv8-G algorithm achieved average precision(AP)values of 98.22%,98.15%,and 97.32%for corn detection at 7,14,and 21 days after emergence,respectively.Additionally,the crop line extraction accuracy across all stages was 96.52%.These results demonstrate the model's ability to maintain high detection accuracy despite challenging conditions in the field.[Conclusions]The proposed crop line extraction method effectively addresses field challenges such as lighting and weed interference,enabling rapid and accurate crop identification.This approach supports the automatic navigation of agricultural machinery,offering significant improvements in the precision and efficiency of field operations.
基金Projects(61174115,51104044)supported by the National Natural Science Foundation of ChinaProject(L2010153)supported by Scientific Research Project of Liaoning Provincial Education Department,China
文摘To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze the periodicity of hot rolling and find three sensitive parameters to strip thickness, which were used to undertake polynomial curve fitting prediction based on least square respectively, and preliminary prediction results were obtained. Then, D_S evidence theory was used to reconstruct the prediction results under different parameters, in which basic probability assignment(BPA) was the key and the proposed contribution rate calculated using grey relational degree was regarded as BPA, which realizes BPA selection objectively. Finally, from this distribution, future strip thickness trend was inferred. Experimental results clearly show the improved prediction accuracy and stability compared with other prediction models, such as GM(1,1) and the weighted average prediction model.
基金supported by the National Natural Science Foundation of China(1150143371473187)the Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ1014)
文摘In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fixed point type iterative algorithm for unknown parameters are presented, and the least square estimates of the parameters are also proposed. Meanwhile, confidence intervals of model parameters are constructed by using the asymptotic theory and bootstrap technique. Numerical illustration is given to investigate the performance of our methods.
基金Projects(2013BAB02B01,2013BAB02B03)supported by the National Key Technologies R&D Program of ChinaProjects(41072224,41272347)supported by the National Natural Science Foundation of China
文摘Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine(LS-SVM) technique was proposed.The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters,and an LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters.The proposed approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the permanent ship lock within the Three Gorges project in China.The results indicate that the proposed method presents the uncertainties in the geomechanical parameters reasonably well,and also improves the understanding that the monitored information is important in real projects.
文摘By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of the identification parameters is given. In order to decrease the asymptotic error, a corrector of maximum likelihood (CML) estimation with its recursive algorithm is given. It has been proved that the corrector has smaller asymptotic error than the least square methods. A simulation example shows that the corrector of maximum likelihood estimation is of higher approximating precision to the true parameters than the least square methods.