期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
GPS short-delay multipath estimation and mitigation based on least square method 被引量:6
1
作者 Zhang Shengkang~(1,2),Wang Hongbo~(1,2),Yang Jun~(1,2) & He Leiming~(1,2) 1.Beijing Inst.of Radio Metrology and Measurement,Beijing 100854,P.R.China 2.National Key Laboratory of Metrology and Calibration Technology,Beijing 100854,P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期954-961,共8页
The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses... The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering. 展开更多
关键词 global positioning system short-delay least square method multipath mitigation.
在线阅读 下载PDF
Seedling Stage Corn Line Detection Method Based on Improved YOLOv8
2
作者 LI Hongbo TIAN Xin +5 位作者 RUAN Zhiwen LIU Shaowen REN Weiqi SU Zhongbin GAO Rui KONG Qingming 《智慧农业(中英文)》 CSCD 2024年第6期72-84,共13页
[Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under c... [Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under challenging conditions,such as strong light exposure and weed interference.The aims are to develop an effective crop line extraction method by combining YOLOv8-G,Affinity Propagation,and the Least Squares method to enhance detection accuracy and performance in complex field environments.[Methods]The proposed method employs machine vision techniques to address common field challenges.YOLOv8-G,an improved object detection algorithm that combines YOLOv8 and Ghost‐NetV2 for lightweight,high-speed performance,was used to detect the central points of crops.These points were then clustered using the Affinity Propagation algorithm,followed by the application of the Least Squares method to extract the crop lines.Comparative tests were conducted to evaluate multiple backbone networks within the YOLOv8 framework,and ablation studies were performed to validate the enhancements made in YOLOv8-G.[Results and Discussions]The performance of the proposed method was compared with classical object detection and clustering algorithms.The YOLOv8-G algorithm achieved average precision(AP)values of 98.22%,98.15%,and 97.32%for corn detection at 7,14,and 21 days after emergence,respectively.Additionally,the crop line extraction accuracy across all stages was 96.52%.These results demonstrate the model's ability to maintain high detection accuracy despite challenging conditions in the field.[Conclusions]The proposed crop line extraction method effectively addresses field challenges such as lighting and weed interference,enabling rapid and accurate crop identification.This approach supports the automatic navigation of agricultural machinery,offering significant improvements in the precision and efficiency of field operations. 展开更多
关键词 crop row detection YOLOv8-G BACKBONE affinity propagation least square method
在线阅读 下载PDF
A strip thickness prediction method of hot rolling based on D_S information reconstruction 被引量:1
3
作者 孙丽杰 邵诚 张利 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2192-2200,共9页
To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to impleme... To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze the periodicity of hot rolling and find three sensitive parameters to strip thickness, which were used to undertake polynomial curve fitting prediction based on least square respectively, and preliminary prediction results were obtained. Then, D_S evidence theory was used to reconstruct the prediction results under different parameters, in which basic probability assignment(BPA) was the key and the proposed contribution rate calculated using grey relational degree was regarded as BPA, which realizes BPA selection objectively. Finally, from this distribution, future strip thickness trend was inferred. Experimental results clearly show the improved prediction accuracy and stability compared with other prediction models, such as GM(1,1) and the weighted average prediction model. 展开更多
关键词 grey relational degree GM(1 1) model Dempster/Shafer (D_S) method least square method thickness prediction
在线阅读 下载PDF
Estimation for constant-stress accelerated life test from generalized half-normal distribution 被引量:5
4
作者 Liang Wang Yimin Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期810-816,共7页
In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fi... In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fixed point type iterative algorithm for unknown parameters are presented, and the least square estimates of the parameters are also proposed. Meanwhile, confidence intervals of model parameters are constructed by using the asymptotic theory and bootstrap technique. Numerical illustration is given to investigate the performance of our methods. 展开更多
关键词 accelerated life test maximum likelihood estimation least square method bootstrap technique asymptotic distribution
在线阅读 下载PDF
Probabilistic back analysis for geotechnical engineering based on Bayesian and support vector machine 被引量:2
5
作者 陈炳瑞 赵洪波 +1 位作者 茹忠亮 李贤 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4778-4786,共9页
Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support v... Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine(LS-SVM) technique was proposed.The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters,and an LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters.The proposed approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the permanent ship lock within the Three Gorges project in China.The results indicate that the proposed method presents the uncertainties in the geomechanical parameters reasonably well,and also improves the understanding that the monitored information is important in real projects. 展开更多
关键词 geotechnical engineering back analysis UNCERTAINTY Bayesian theory least square method support vector machine(SVM)
在线阅读 下载PDF
Maximum Likelihood Estimation of the Identification Parameters and Its Correction 被引量:2
6
作者 An Kai, Ma Jiaguang & Fu Chengyu Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610041, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第4期31-38,共8页
By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of ... By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of the identification parameters is given. In order to decrease the asymptotic error, a corrector of maximum likelihood (CML) estimation with its recursive algorithm is given. It has been proved that the corrector has smaller asymptotic error than the least square methods. A simulation example shows that the corrector of maximum likelihood estimation is of higher approximating precision to the true parameters than the least square methods. 展开更多
关键词 Probability density Noise least square methods Corrector of maximum likelihood estimation.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部