Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image f...Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image for the person identification. In this work, the fuzzy least brain storm optimization and Euclidean distance(EED) are proposed for the vein based recognition system. Initially, the input image is fed into the region of interest(ROI) extraction which obtains the appropriate image for the subsequent step. Then, features or vein pattern is extracted by the image enlightening, circular averaging filter and holoentropy based thresholding. After the features are obtained, the entropy based Euclidean distance is proposed to fuse the features by the score level fusion with the weight score value. Finally, the optimal matching score is computed iteratively by the newly developed fuzzy least brain storm optimization(FLBSO) algorithm. The novel algorithm is developed by the least mean square(LMS) algorithm and fuzzy brain storm optimization(FBSO). Thus, the experimental results are evaluated and the performance is compared with the existing systems using false acceptance rate(FAR), false rejection rate(FRR) and accuracy. The performance outcome of the proposed algorithm attains the higher accuracy of 89.9% which ensures the better recognition rate.展开更多
针对处理肿瘤基因表达数据特征选择问题,提出了一种特征选择方法 LLE Score.该方法是典型的过滤器类型特征选择方法,在样本类别信息的基础上,LLE Score针对特征向量的局部邻域保存能力进行评价,并且根据评价结果进行特征的选取,以此达...针对处理肿瘤基因表达数据特征选择问题,提出了一种特征选择方法 LLE Score.该方法是典型的过滤器类型特征选择方法,在样本类别信息的基础上,LLE Score针对特征向量的局部邻域保存能力进行评价,并且根据评价结果进行特征的选取,以此达到良好的特征选择效果.在实验部分对肿瘤数据集进行特征选择,并采用支持向量机分类器计算分类准确率.通过分类准确率说明了该方法的有效性.展开更多
文摘Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image for the person identification. In this work, the fuzzy least brain storm optimization and Euclidean distance(EED) are proposed for the vein based recognition system. Initially, the input image is fed into the region of interest(ROI) extraction which obtains the appropriate image for the subsequent step. Then, features or vein pattern is extracted by the image enlightening, circular averaging filter and holoentropy based thresholding. After the features are obtained, the entropy based Euclidean distance is proposed to fuse the features by the score level fusion with the weight score value. Finally, the optimal matching score is computed iteratively by the newly developed fuzzy least brain storm optimization(FLBSO) algorithm. The novel algorithm is developed by the least mean square(LMS) algorithm and fuzzy brain storm optimization(FBSO). Thus, the experimental results are evaluated and the performance is compared with the existing systems using false acceptance rate(FAR), false rejection rate(FRR) and accuracy. The performance outcome of the proposed algorithm attains the higher accuracy of 89.9% which ensures the better recognition rate.
文摘针对处理肿瘤基因表达数据特征选择问题,提出了一种特征选择方法 LLE Score.该方法是典型的过滤器类型特征选择方法,在样本类别信息的基础上,LLE Score针对特征向量的局部邻域保存能力进行评价,并且根据评价结果进行特征的选取,以此达到良好的特征选择效果.在实验部分对肿瘤数据集进行特征选择,并采用支持向量机分类器计算分类准确率.通过分类准确率说明了该方法的有效性.