Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However...Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However, wellbore instability, caused by the invasion of drilling fluids into shale formations, remains a significant challenge for the safe and efficient extraction of shale oil and gas. This work reports the preparation of mesoporous SiO2nanoparticles with low surface energy, utilized as multifunctional agents to enhance the performance of oil-based drilling fluids aimed at improving wellbore stability. The results indicate that the coating prepared from these nanoparticles exhibit excellent hydrophobicity and antifouling properties, increasing the water contact angle from 32°to 146°and oil contact angle from 24°to134.8°. Additionally, these nanoparticles exhibit exceptional chemical stability and thermal resistance.Incorporating these nanoparticles into oil-based drilling fluids reduced the surface energy of the mud cake from 34.99 to 8.17 m J·m-2and increased the roughness of shale from 0.26 to 2.39 μm. These modifications rendered the mud cake and shale surfaces amphiphobic, effectively mitigating capillary infiltration and delaying the long-term strength degradation of shale in oil-based drilling fluids. After 28days of immersion in oil-based drilling fluid, shale cores treated with MF-SiO2exhibited a 30.5% increase in compressive strength compared to untreated cores. Additionally, these nanoparticles demonstrated the ability to penetrate and seal rock pores, reducing the API filtration volume of the drilling fluid from11.2 to 7.6 m L. This study introduces a novel approach to enhance the development of shale gas and oil resources, offering a promising strategy for wellbore stabilization in oil-based drilling fluid systems.展开更多
Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is de...Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is developed.Through microscopic structural observations and performance evaluations in indoor experiments,the mechanism of proppant placement under the action of the SS and the effects of the SS on proppant placement dimensions and fracture conductivity were elucidated.The SS facilitates the formation of robust fiber-proppant agglomerates by polymer,fiber,and quartz sand.Compared to bare proppants,these agglomerates exhibit reduced density,increased volume,and enlarged contact area with the fluid during settlement,leading to heightened buoyancy and drag forces,ultimately resulting in slower settling velocities and enhanced transportability into deeper regions of the fracture.Co-injecting the fiber and the SS alongside the proppant into the reservoir effectively reduces the fiber escape rate,increases the proppant volume in the slickwater,and boosts the proppant placement height,conveyance distance and fracture conductivity,while also decreasing the proppant backflow.Experimental results indicate an optimal SS mass fraction of 0.3%.The application of this SS in over 80 wells targeting tight gas,shale oil,and shale gas reservoirs has substantiated its strong adaptability and general suitability for meeting the production enhancement,cost reduction,and sand control requirements of such wells.展开更多
Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons a...Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons are produced by bombarding a low-energy proton beam onto a beryllium or lithium target.In such an acceleratorbased neutron source,a radio frequency quadrupole(RFQ)is usually utilized to accelerate a high-intensity proton beam to a few MeV.This study mainly covers the highfrequency structure design optimizations of a 4-vane RFQ with pi-mode stabilizer loops(PISLs)and its RF stability analysis.A 176 MHz RFQ accelerator is designed to operate at a 10%duty factor and could accelerate an80 mA proton beam from 65 keV to 2.5 MeV within a length of 5.3 m.The adoption of PISLs ensures high RF stability,eases the operation of the accelerator,and implies less stringent alignment and machining tolerances.展开更多
In order to overcome serious instability prob- lems in hydratable shale formations, a novel electropositive wellbore stabilizer (EPWS) was prepared by a new approach. It has good colloidal stability, particle size d...In order to overcome serious instability prob- lems in hydratable shale formations, a novel electropositive wellbore stabilizer (EPWS) was prepared by a new approach. It has good colloidal stability, particle size dis- tribution, compatibility, sealing property, and flexible adaptability. A variety of methods including measurements of particle size, Zeta potential, colloidal stability, contact angle, shale stability index, shale dispersion, shale swelling, and plugging experiments were adopted to characterize the EPWS and evaluate its anti-sloughing capacity and flexible adaptability. Results show that the EPWS has advantages over the conventional wellbore stabilizer (ZX-3) in particle size distribution, colloidal stability, inhibition, compatibil- ity, and flexible adaptability. The EPWS with an average particle size of 507 nm and an average Zeta potential of 54 mV could be stable for 147 days and be compatible with salt tolerant or positive charged additives, and it also exhibited preferable anti-sloughing performance to hydrat- able shales at 77, 100, and 120 ~C, and better compatibility with sodium bentonite than ZX-3 and KC1. The EPWS can plug micro-fractures and pores by forming a tight external mud cake and an internal sealing belt to retard pressure transmission and prevent filtrate invasion, enhancing hydrophobicity of shale surfaces by adsorption to inhibithydration. The EPWS with flexible adaptability to tem- perature for inhibition and sealing capacity is available for long open-hole sections during drilling.展开更多
Knowing methane desorption characteristics is essential to define the contribution of adsorbed gas to gas well production.To evaluate the synthetic effect of a clay stabilizer solution on methane desorption kinetics a...Knowing methane desorption characteristics is essential to define the contribution of adsorbed gas to gas well production.To evaluate the synthetic effect of a clay stabilizer solution on methane desorption kinetics and isotherms pertaining to Longmaxi shale,an experimental setup was designed based on the volumetric method.The objective was to conduct experiments on methane adsorption and desorption kinetics and isotherms before and after clay stabilizer treatments.The experimental data were a good fit for both the intraparticle diffusion model and the Freundlich isotherm model.We analyzed the effect of the clay stabilizer on desorption kinetics and isotherms.Results show that clay stabilizer can obviously improve the diffusion rate constant and reduce the methane adsorption amount.Moreover,we analyzed the desorption efficiency before and after treatment as well as the adsorbed methane content.The results show that a higher desorption efficiency after treatment can be observed when the pressure is higher than 6.84 MPa.Meanwhile,the adsorbed methane content before and after treatment all increase when the pressure decreases,and clay stabilizer can obviously promote the adsorbed methane to free gas when the pressure is lower than 19 MPa.This can also be applied to the optimization formulation of slickwater and the design of gas well production.展开更多
Backlash nonlinearity inevitably exists in the actuator of tank horizontal stabilizer and has adverse effect on the system control performance,however,how to effectively eliminate its effect remains a pending issue.To...Backlash nonlinearity inevitably exists in the actuator of tank horizontal stabilizer and has adverse effect on the system control performance,however,how to effectively eliminate its effect remains a pending issue.To solve this problem,a robust adaptive precision motion controller is presented in this paper to address uncertainties and unknown actuator backlash of tank horizontal actuator.The controller handles the modeling uncertainties including parameter uncertainties and unmodeled disturbances by integrating adaptive feedforward compensation and continuous nonlinear robust law.Based on the backstepping method,a smooth backlash inverse model is constructed by combining the adaptive idea.Meanwhile,the unknown backlash parameters of the system can be approximated through the parameter adaptation,and the impact of the actuator backlash nonlinearity is effectively compensated via the inverse operation,which can availably improve the tracking performance.Moreover,the adaptive law can update the disturbance ranges of tank horizontal stabilizer online in real time,which enhances the feasibility in practical engineering applications.Furthermore,the stability analysis based on Lyapunov function shows that with the existence of unmodeled disturbances and unknown actuator backlash,the designed controller guarantees excellent asymptotic output tracking performance.Extensive comparative results verify the effectiveness of the proposed control strategy.展开更多
In this paper,we develop a novel hybrid automatic-repeat-request(ARQ)protocol for the quantum communication system using quantum stabilizer codes.The quantum information is encoded by stabilizer codes to against the c...In this paper,we develop a novel hybrid automatic-repeat-request(ARQ)protocol for the quantum communication system using quantum stabilizer codes.The quantum information is encoded by stabilizer codes to against the channel noise.The twophoton entangled state is prepared for codeword secure transmission.Hybrid ARQ protocol rules the recognition and retransmission of error codewords.In this protocol,the property of quantum entangled state ensures the security of information,the theory of hybrid ARQ system improves the reliability of transmission,the theory of quantum stabilizer codes corrects the flipping errors of codewords.Finally,we verify the security and throughput efficiency of this protocol.展开更多
Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correcti...Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correction ability and low overhead remains a significant challenge.In this paper,a low-overhead fault-tolerant error correction scheme is proposed for quantum communication systems.Firstly,syndrome ancillas are prepared into Bell states to detect errors caused by channel noise.We propose a detection approach that reduces the propagation path of quantum gate fault and reduces the circuit depth by splitting the stabilizer generator into X-type and Z-type.Additionally,a syndrome extraction circuit is equipped with two flag qubits to detect quantum gate faults,which may also introduce errors into the code block during the error detection process.Finally,analytical results are provided to demonstrate the fault-tolerant performance of the proposed FTEC scheme with the lower overhead of the ancillary qubits and circuit depth.展开更多
Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method ...Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method was developed to better deal with these problems, and this lift feedback fin stabilizer system was simulated under different sea condition. Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.展开更多
A zero-speed fin stabilizer system was developed for rolling control of a marine robot.As a robot steering device near the sea surface with low speed,it will have rolling motion due to disturbance from waves.Based on ...A zero-speed fin stabilizer system was developed for rolling control of a marine robot.As a robot steering device near the sea surface with low speed,it will have rolling motion due to disturbance from waves.Based on the working principle of a zero-speed fin stabilizer and a marine robot’s dynamic properties,a roll damping controller was designed with a master-slave structure.It was composed of a sliding mode controller and an output tracking controller that calculates the desired righting moment and drives the zero-speed fin stabilizer.The methods of input-output linearization and model reference were used to realize the tracking control.Simulations were presented to demonstrate the validity of the control law proposed.展开更多
We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of ...We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.展开更多
Motivated by the need of quantum measurement of Majorana qubits and surface-code stabilizers, we analyze the performance of a double-dot interferometer under the influence of environment noise. The double-dot setup de...Motivated by the need of quantum measurement of Majorana qubits and surface-code stabilizers, we analyze the performance of a double-dot interferometer under the influence of environment noise. The double-dot setup design allows accounting for the full multiple tunneling process between the dots through the Majorana island, within a master equation approach. In the co-tunneling regime, which results in a Majorana-mediated effective coupling between the dots, the master equation approach allows us to obtain analytic solutions for the measurement currents. The measurement quality,characterized by figures of merit such as the visibility of measurement signals, is carried out in regard to the unusual decoherence effect rather than ‘which-path’ dephasing. The results obtained in this work are expected to be useful for future experiments of Majorana qubit and stabilizer measurements.展开更多
The stabilizer group for an n-qubit state |Φ〉 is the set of all invertible local operators(ILO) g = g1g2…gn,gi 2 GL(2,C) such that |Φ〉= g|Φ〉. Recently, Gour et al. [Gour G, Kraus B and Wallach N R 2017 J...The stabilizer group for an n-qubit state |Φ〉 is the set of all invertible local operators(ILO) g = g1g2…gn,gi 2 GL(2,C) such that |Φ〉= g|Φ〉. Recently, Gour et al. [Gour G, Kraus B and Wallach N R 2017 J. Math. Phys. 58092204] presented that almost all n-qubit states jyi own a trivial stabilizer group when n≥5. In this article, we consider the case when the stabilizer group of an n-qubit symmetric pure state jyi is trivial. First we show that the stabilizer group for an n-qubit symmetric pure state |Φ〉 is nontrivial when n≤4. Then we present a class of n-qubit symmetric states |Ψ〉 with a trivial stabilizer group when n≥5. Finally, we propose a conjecture and prove that an n-qubit symmetric pure state owns a trivial stabilizer group when its diversity number is bigger than 5 under the conjecture we make, which confirms the main result of Gour et al. partly.展开更多
To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose(NC)/nitroglycerine(NG),we synthesized N-(...To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose(NC)/nitroglycerine(NG),we synthesized N-(4-methoxy)phenylpyrrolidine-C_(60) and four different of bis(N-(4-methoxy)phenylpyrrolidine)-C_(60) compounds through Prato reaction.Their structures were characterized by UVevis,^(1)H NMR,^(13)C NMR,high-resolution mass spectroscopy,and single-crystal X-ray diffraction.Their stabilization effect to NC/NG were investigated using differential scanning calorimetry,methyl violet,vacuum stabilization effect,weight loss,and accelerating rate calorimeter tests.The results indicated these compounds had excellent stabilization effect to NC/NG.The stabilization effect of the fulleropyrrolidine bisadducts to NC/NG is significantly better than that of fulleropyrrolidine monoadduct and C_(60).Moreover,the position where pyrrolidine binds to fullerene in fulleropyrrolidine bisadducts is different,and its stabilization effect to NC is also different.The stabilization effect order of different bisadduct isomers to nitrocellulose is as follows:e-edge>trans-2>cis-2>trans-3.Electron paramagnetic resonance(EPR)and FT-IR were used to study the stabilization mechanism of fulleropyrrolidine derivatives to NC/NG.The EPR results also show that fulleropyrrolidine bisadducts with different addition sites have different abilities to absorb nitroxide,and their ability is better than that of the monoadduct and C_(60),which is consistent with the results of stabilization effect performance test.展开更多
A series of fullerene anisole derivative stabilizers was synthesized by nucleophilic substitution reaction using hexachlorofullerene and benzyl alcohol as raw materials to extend the service duration of nitrocellulose...A series of fullerene anisole derivative stabilizers was synthesized by nucleophilic substitution reaction using hexachlorofullerene and benzyl alcohol as raw materials to extend the service duration of nitrocellulose(NC)-based propellants.Single-crystal X-ray diffraction,nuclear magnetic resonance,highresolution mass spectrometry,Fourier transform infrared(FT-IR)spectroscopy,and UV-Vis spectroscopy were used to characterize the structures of the synthesized fullerene anisole derivative stabilizers.Methyl violet,differential scanning calorimetry test,isothermal weight loss,vacuum stability test,and adiabatic accelerated test were used to study their compatibility with NC and their ability to stabilize NC.The results show that the designed and synthesized novel fullerene anisole derivative stabilizer has good compatibility with NC,and their overall stabilizing effects on NC are better than those of the traditional stabilizers,diphenylamine(DPA),and N,N’-dimethyl-N,N’-diphenylurea(C2).The stabilizing effects was ranked as:3b>2d>2a>2c>C2>2b>DPA>NC.In addition,FT-IR analysis and electron spin resonance spectroscopy were applied to explore the stability mechanism of fullerene-based stabilizers to NC.The results reveal that the new fullerene stabilizer can adsorb and effectively eliminate the nitrogen oxide free radicals generated by NC degradation;therefore,it can forbid the autocatalytic degradation of NC and stabilize NC.展开更多
This paper reports on an experiment about a novel method of polarization stabilization. The polarization stabilizer proposed here has an additional function of polarization transformation from any state of polarizatio...This paper reports on an experiment about a novel method of polarization stabilization. The polarization stabilizer proposed here has an additional function of polarization transformation from any state of polarization into any others. The particle swarm optimization is introduced as a control algorithm in the process of either searching or endless tracking. The tracking speed of the stabilizer is obtained up to 12.6 krad/s by using hardware we have in the laboratory, which means that we can achieve a higher speed practical polarization stabilizer if we have faster hardware.展开更多
Achieving the reuse of traditional egg by-products,salted duck egg whites(SEW),is an urgent problem to be solved.In this current work,we constructed a heat-induced gel-assisted desalination method for SEW.Subsequently...Achieving the reuse of traditional egg by-products,salted duck egg whites(SEW),is an urgent problem to be solved.In this current work,we constructed a heat-induced gel-assisted desalination method for SEW.Subsequently,a top-down way was utilized to prepare desalted duck egg protein nanogels(DEPN)with uniformly distributed diameters and their application in the oil/water(O/W)interface system was explored.The results revealed that the increase of DEPN concentration could lower the droplet size,however,the size was negatively correlated with the oil phase fraction.Moreover,the effect of pH,ionic strength,and temperature on the emulsion stability demonstrated that the DEPN-stabilized emulsion displayed superior physical stability under different conditions.The addition of NaCl resulted in the significant decrease in droplet size of the emulsion,while further increasing the NaCl concentration,the droplet size did not decrease accordingly.Besides,heat-treatment and cold-treatment had little negative effect on the stability of the emulsion.Even if the droplet size of the emulsion increased at 80℃for 3 h,the morphology of the emulsion remained unchanged.Our study demonstrated DEPN had great potential as a stabilizer for food-grade Pickering emulsions.展开更多
Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,...Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions.展开更多
Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy t...Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed byHCanode.Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption.Here,we propose 1,2-dihydroxybenzene Na salt(NaDB)as a cathode compensation agent with high specific capacity(347.9 mAh g^(-1)),lower desodiation potential(2.4–2.8 V)and high utilization(99%).Meanwhile,its byproduct could functionalize HC with more C=O groups and promote its reversible capacity.Consequently,the presodiation hard carbon(pHC)anode exhibits highly reversible capacity of 204.7 mAh g^(-1) with 98%retention at 5 C rate over 1000 cycles.Moreover,with 5 wt%NaDB initially coated on the Na3V2(PO4)3(NVP)cathode,the capacity retention of NVP + NaDB|HC cell could increase from 22%to 89%after 1000 cycles at 1 C rate.This work provides a new avenue to improve reversible capacity and cycling performance of SIBs through designing functional cathode compensation agent.展开更多
基金support from the National Natural:Science Foundation of China(NO.52174014)the National Natural Science Foundation Basic Science Center(NO.52288101).
文摘Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However, wellbore instability, caused by the invasion of drilling fluids into shale formations, remains a significant challenge for the safe and efficient extraction of shale oil and gas. This work reports the preparation of mesoporous SiO2nanoparticles with low surface energy, utilized as multifunctional agents to enhance the performance of oil-based drilling fluids aimed at improving wellbore stability. The results indicate that the coating prepared from these nanoparticles exhibit excellent hydrophobicity and antifouling properties, increasing the water contact angle from 32°to 146°and oil contact angle from 24°to134.8°. Additionally, these nanoparticles exhibit exceptional chemical stability and thermal resistance.Incorporating these nanoparticles into oil-based drilling fluids reduced the surface energy of the mud cake from 34.99 to 8.17 m J·m-2and increased the roughness of shale from 0.26 to 2.39 μm. These modifications rendered the mud cake and shale surfaces amphiphobic, effectively mitigating capillary infiltration and delaying the long-term strength degradation of shale in oil-based drilling fluids. After 28days of immersion in oil-based drilling fluid, shale cores treated with MF-SiO2exhibited a 30.5% increase in compressive strength compared to untreated cores. Additionally, these nanoparticles demonstrated the ability to penetrate and seal rock pores, reducing the API filtration volume of the drilling fluid from11.2 to 7.6 m L. This study introduces a novel approach to enhance the development of shale gas and oil resources, offering a promising strategy for wellbore stabilization in oil-based drilling fluid systems.
文摘Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is developed.Through microscopic structural observations and performance evaluations in indoor experiments,the mechanism of proppant placement under the action of the SS and the effects of the SS on proppant placement dimensions and fracture conductivity were elucidated.The SS facilitates the formation of robust fiber-proppant agglomerates by polymer,fiber,and quartz sand.Compared to bare proppants,these agglomerates exhibit reduced density,increased volume,and enlarged contact area with the fluid during settlement,leading to heightened buoyancy and drag forces,ultimately resulting in slower settling velocities and enhanced transportability into deeper regions of the fracture.Co-injecting the fiber and the SS alongside the proppant into the reservoir effectively reduces the fiber escape rate,increases the proppant volume in the slickwater,and boosts the proppant placement height,conveyance distance and fracture conductivity,while also decreasing the proppant backflow.Experimental results indicate an optimal SS mass fraction of 0.3%.The application of this SS in over 80 wells targeting tight gas,shale oil,and shale gas reservoirs has substantiated its strong adaptability and general suitability for meeting the production enhancement,cost reduction,and sand control requirements of such wells.
文摘Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons are produced by bombarding a low-energy proton beam onto a beryllium or lithium target.In such an acceleratorbased neutron source,a radio frequency quadrupole(RFQ)is usually utilized to accelerate a high-intensity proton beam to a few MeV.This study mainly covers the highfrequency structure design optimizations of a 4-vane RFQ with pi-mode stabilizer loops(PISLs)and its RF stability analysis.A 176 MHz RFQ accelerator is designed to operate at a 10%duty factor and could accelerate an80 mA proton beam from 65 keV to 2.5 MeV within a length of 5.3 m.The adoption of PISLs ensures high RF stability,eases the operation of the accelerator,and implies less stringent alignment and machining tolerances.
基金financially supported by the National Science Foundation of China (No.51374233)Shandong Province Science Foundation (No.ZR2013EEM032)+1 种基金the Fundamental Research Funds for the Central Universities (No.13CX02044A)the Project of China Scholarship Council (201306455021)
文摘In order to overcome serious instability prob- lems in hydratable shale formations, a novel electropositive wellbore stabilizer (EPWS) was prepared by a new approach. It has good colloidal stability, particle size dis- tribution, compatibility, sealing property, and flexible adaptability. A variety of methods including measurements of particle size, Zeta potential, colloidal stability, contact angle, shale stability index, shale dispersion, shale swelling, and plugging experiments were adopted to characterize the EPWS and evaluate its anti-sloughing capacity and flexible adaptability. Results show that the EPWS has advantages over the conventional wellbore stabilizer (ZX-3) in particle size distribution, colloidal stability, inhibition, compatibil- ity, and flexible adaptability. The EPWS with an average particle size of 507 nm and an average Zeta potential of 54 mV could be stable for 147 days and be compatible with salt tolerant or positive charged additives, and it also exhibited preferable anti-sloughing performance to hydrat- able shales at 77, 100, and 120 ~C, and better compatibility with sodium bentonite than ZX-3 and KC1. The EPWS can plug micro-fractures and pores by forming a tight external mud cake and an internal sealing belt to retard pressure transmission and prevent filtrate invasion, enhancing hydrophobicity of shale surfaces by adsorption to inhibithydration. The EPWS with flexible adaptability to tem- perature for inhibition and sealing capacity is available for long open-hole sections during drilling.
基金supported by the China Scholarship Council(No.201908505143)the Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2017jcyj AX0290/No.cstc2018jcyj AX0563)。
文摘Knowing methane desorption characteristics is essential to define the contribution of adsorbed gas to gas well production.To evaluate the synthetic effect of a clay stabilizer solution on methane desorption kinetics and isotherms pertaining to Longmaxi shale,an experimental setup was designed based on the volumetric method.The objective was to conduct experiments on methane adsorption and desorption kinetics and isotherms before and after clay stabilizer treatments.The experimental data were a good fit for both the intraparticle diffusion model and the Freundlich isotherm model.We analyzed the effect of the clay stabilizer on desorption kinetics and isotherms.Results show that clay stabilizer can obviously improve the diffusion rate constant and reduce the methane adsorption amount.Moreover,we analyzed the desorption efficiency before and after treatment as well as the adsorbed methane content.The results show that a higher desorption efficiency after treatment can be observed when the pressure is higher than 6.84 MPa.Meanwhile,the adsorbed methane content before and after treatment all increase when the pressure decreases,and clay stabilizer can obviously promote the adsorbed methane to free gas when the pressure is lower than 19 MPa.This can also be applied to the optimization formulation of slickwater and the design of gas well production.
基金supported in part by the National Natural Science Foundation of China under Grant 51905271,Grant No.52275062and Grant No.52075262。
文摘Backlash nonlinearity inevitably exists in the actuator of tank horizontal stabilizer and has adverse effect on the system control performance,however,how to effectively eliminate its effect remains a pending issue.To solve this problem,a robust adaptive precision motion controller is presented in this paper to address uncertainties and unknown actuator backlash of tank horizontal actuator.The controller handles the modeling uncertainties including parameter uncertainties and unmodeled disturbances by integrating adaptive feedforward compensation and continuous nonlinear robust law.Based on the backstepping method,a smooth backlash inverse model is constructed by combining the adaptive idea.Meanwhile,the unknown backlash parameters of the system can be approximated through the parameter adaptation,and the impact of the actuator backlash nonlinearity is effectively compensated via the inverse operation,which can availably improve the tracking performance.Moreover,the adaptive law can update the disturbance ranges of tank horizontal stabilizer online in real time,which enhances the feasibility in practical engineering applications.Furthermore,the stability analysis based on Lyapunov function shows that with the existence of unmodeled disturbances and unknown actuator backlash,the designed controller guarantees excellent asymptotic output tracking performance.Extensive comparative results verify the effectiveness of the proposed control strategy.
基金The work is supported by was supported by the Shandong Province Higher Educational Science and Technology Program(Grant No.J18KZ012)the National Natural Science Foundation of China(Grant No.11975132,61772295)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2019YQ01).
文摘In this paper,we develop a novel hybrid automatic-repeat-request(ARQ)protocol for the quantum communication system using quantum stabilizer codes.The quantum information is encoded by stabilizer codes to against the channel noise.The twophoton entangled state is prepared for codeword secure transmission.Hybrid ARQ protocol rules the recognition and retransmission of error codewords.In this protocol,the property of quantum entangled state ensures the security of information,the theory of hybrid ARQ system improves the reliability of transmission,the theory of quantum stabilizer codes corrects the flipping errors of codewords.Finally,we verify the security and throughput efficiency of this protocol.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61671087 and 61962009)the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A02)+1 种基金Huawei Technologies Co.Ltd(Grant No.YBN2020085019)the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant No.2018BDKFJJ018)。
文摘Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correction ability and low overhead remains a significant challenge.In this paper,a low-overhead fault-tolerant error correction scheme is proposed for quantum communication systems.Firstly,syndrome ancillas are prepared into Bell states to detect errors caused by channel noise.We propose a detection approach that reduces the propagation path of quantum gate fault and reduces the circuit depth by splitting the stabilizer generator into X-type and Z-type.Additionally,a syndrome extraction circuit is equipped with two flag qubits to detect quantum gate faults,which may also introduce errors into the code block during the error detection process.Finally,analytical results are provided to demonstrate the fault-tolerant performance of the proposed FTEC scheme with the lower overhead of the ancillary qubits and circuit depth.
基金the "Ship Control Engineering" emphasis project of 211 Engineering in the tenth five-year plan.
文摘Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method was developed to better deal with these problems, and this lift feedback fin stabilizer system was simulated under different sea condition. Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.
基金Supported by the National Natural Science Foundation under Grant No50879012
文摘A zero-speed fin stabilizer system was developed for rolling control of a marine robot.As a robot steering device near the sea surface with low speed,it will have rolling motion due to disturbance from waves.Based on the working principle of a zero-speed fin stabilizer and a marine robot’s dynamic properties,a roll damping controller was designed with a master-slave structure.It was composed of a sliding mode controller and an output tracking controller that calculates the desired righting moment and drives the zero-speed fin stabilizer.The methods of input-output linearization and model reference were used to realize the tracking control.Simulations were presented to demonstrate the validity of the control law proposed.
基金supported by the National Basic Research Program of China (Grant No.2010CB328300)the National Natural Science Foundation of China (Grant Nos.60972046 and 60902030)+4 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT0852)the Natural Science Foundation of Shaanxi Province (Grant No.2010JQ8025)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100203120004)the 111 Program (Grant No.B08038)the China Scholarship Council (Grant No.[2008]3019)
文摘We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303304)the National Natural Science Foundation of China (Grant Nos. 11675016, 11974011, and 61905174)。
文摘Motivated by the need of quantum measurement of Majorana qubits and surface-code stabilizers, we analyze the performance of a double-dot interferometer under the influence of environment noise. The double-dot setup design allows accounting for the full multiple tunneling process between the dots through the Majorana island, within a master equation approach. In the co-tunneling regime, which results in a Majorana-mediated effective coupling between the dots, the master equation approach allows us to obtain analytic solutions for the measurement currents. The measurement quality,characterized by figures of merit such as the visibility of measurement signals, is carried out in regard to the unusual decoherence effect rather than ‘which-path’ dephasing. The results obtained in this work are expected to be useful for future experiments of Majorana qubit and stabilizer measurements.
基金Project partially supported by the National Key Research and Development Program of China(Grant No.2016YFB1000902)the National Natural Science Foundation of China(Grant Nos.61232015 and 61621003)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences(CAS)Institute of Computing Technology of CAS
文摘The stabilizer group for an n-qubit state |Φ〉 is the set of all invertible local operators(ILO) g = g1g2…gn,gi 2 GL(2,C) such that |Φ〉= g|Φ〉. Recently, Gour et al. [Gour G, Kraus B and Wallach N R 2017 J. Math. Phys. 58092204] presented that almost all n-qubit states jyi own a trivial stabilizer group when n≥5. In this article, we consider the case when the stabilizer group of an n-qubit symmetric pure state jyi is trivial. First we show that the stabilizer group for an n-qubit symmetric pure state |Φ〉 is nontrivial when n≤4. Then we present a class of n-qubit symmetric states |Ψ〉 with a trivial stabilizer group when n≥5. Finally, we propose a conjecture and prove that an n-qubit symmetric pure state owns a trivial stabilizer group when its diversity number is bigger than 5 under the conjecture we make, which confirms the main result of Gour et al. partly.
基金This work was supported by National Natural Science Foundation of China(51972278)Outstanding Youth Science and Technology Talents Program of Sichuan(no.19JCQN0085)Open Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(No.19fksy04).
文摘To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose(NC)/nitroglycerine(NG),we synthesized N-(4-methoxy)phenylpyrrolidine-C_(60) and four different of bis(N-(4-methoxy)phenylpyrrolidine)-C_(60) compounds through Prato reaction.Their structures were characterized by UVevis,^(1)H NMR,^(13)C NMR,high-resolution mass spectroscopy,and single-crystal X-ray diffraction.Their stabilization effect to NC/NG were investigated using differential scanning calorimetry,methyl violet,vacuum stabilization effect,weight loss,and accelerating rate calorimeter tests.The results indicated these compounds had excellent stabilization effect to NC/NG.The stabilization effect of the fulleropyrrolidine bisadducts to NC/NG is significantly better than that of fulleropyrrolidine monoadduct and C_(60).Moreover,the position where pyrrolidine binds to fullerene in fulleropyrrolidine bisadducts is different,and its stabilization effect to NC is also different.The stabilization effect order of different bisadduct isomers to nitrocellulose is as follows:e-edge>trans-2>cis-2>trans-3.Electron paramagnetic resonance(EPR)and FT-IR were used to study the stabilization mechanism of fulleropyrrolidine derivatives to NC/NG.The EPR results also show that fulleropyrrolidine bisadducts with different addition sites have different abilities to absorb nitroxide,and their ability is better than that of the monoadduct and C_(60),which is consistent with the results of stabilization effect performance test.
基金financial support received from the Natural Science Foundation of China(Grant No.51972278)Outstanding Youth Science and Technology Talents Program of Sichuan(Grant No.19JCQN0085)Open Project of State Key Laboratory of Environment-friendly Energy Materials(Southwest University of Science and Technology,Grant No.20fksy16)。
文摘A series of fullerene anisole derivative stabilizers was synthesized by nucleophilic substitution reaction using hexachlorofullerene and benzyl alcohol as raw materials to extend the service duration of nitrocellulose(NC)-based propellants.Single-crystal X-ray diffraction,nuclear magnetic resonance,highresolution mass spectrometry,Fourier transform infrared(FT-IR)spectroscopy,and UV-Vis spectroscopy were used to characterize the structures of the synthesized fullerene anisole derivative stabilizers.Methyl violet,differential scanning calorimetry test,isothermal weight loss,vacuum stability test,and adiabatic accelerated test were used to study their compatibility with NC and their ability to stabilize NC.The results show that the designed and synthesized novel fullerene anisole derivative stabilizer has good compatibility with NC,and their overall stabilizing effects on NC are better than those of the traditional stabilizers,diphenylamine(DPA),and N,N’-dimethyl-N,N’-diphenylurea(C2).The stabilizing effects was ranked as:3b>2d>2a>2c>C2>2b>DPA>NC.In addition,FT-IR analysis and electron spin resonance spectroscopy were applied to explore the stability mechanism of fullerene-based stabilizers to NC.The results reveal that the new fullerene stabilizer can adsorb and effectively eliminate the nitrogen oxide free radicals generated by NC degradation;therefore,it can forbid the autocatalytic degradation of NC and stabilize NC.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA01Z224)Huawei Technology Project,China (Grant No. YBON2008014)
文摘This paper reports on an experiment about a novel method of polarization stabilization. The polarization stabilizer proposed here has an additional function of polarization transformation from any state of polarization into any others. The particle swarm optimization is introduced as a control algorithm in the process of either searching or endless tracking. The tracking speed of the stabilizer is obtained up to 12.6 krad/s by using hardware we have in the laboratory, which means that we can achieve a higher speed practical polarization stabilizer if we have faster hardware.
基金financially supported by the National Natural Science Foundation of China(Grant No.32172354)the Opening Project of Key Laboratory of Oilseeds processing,Ministry of Agriculture and Rural Affairs(202003)the Doctoral Research Startup Fund of Hubei University of Technology(BSQD2017027)。
文摘Achieving the reuse of traditional egg by-products,salted duck egg whites(SEW),is an urgent problem to be solved.In this current work,we constructed a heat-induced gel-assisted desalination method for SEW.Subsequently,a top-down way was utilized to prepare desalted duck egg protein nanogels(DEPN)with uniformly distributed diameters and their application in the oil/water(O/W)interface system was explored.The results revealed that the increase of DEPN concentration could lower the droplet size,however,the size was negatively correlated with the oil phase fraction.Moreover,the effect of pH,ionic strength,and temperature on the emulsion stability demonstrated that the DEPN-stabilized emulsion displayed superior physical stability under different conditions.The addition of NaCl resulted in the significant decrease in droplet size of the emulsion,while further increasing the NaCl concentration,the droplet size did not decrease accordingly.Besides,heat-treatment and cold-treatment had little negative effect on the stability of the emulsion.Even if the droplet size of the emulsion increased at 80℃for 3 h,the morphology of the emulsion remained unchanged.Our study demonstrated DEPN had great potential as a stabilizer for food-grade Pickering emulsions.
基金National Natural Science Foundation of China(U22B20149,22308376)Outstanding Young Scholars Foundation of China University of Petroleum(Beijing)(2462023BJRC015)Foundation of United Institute for Carbon Neutrality(CNIF20230209)。
文摘Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions.
基金supported by National Natural Science Foundation of China(No.22278308 and 22109114)Open Foundation of Shanghai Jiao Tong University Shaoxing Research Institute of Renewable Energy and Molecular Engineering(Grant number:JDSX2022023).
文摘Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed byHCanode.Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption.Here,we propose 1,2-dihydroxybenzene Na salt(NaDB)as a cathode compensation agent with high specific capacity(347.9 mAh g^(-1)),lower desodiation potential(2.4–2.8 V)and high utilization(99%).Meanwhile,its byproduct could functionalize HC with more C=O groups and promote its reversible capacity.Consequently,the presodiation hard carbon(pHC)anode exhibits highly reversible capacity of 204.7 mAh g^(-1) with 98%retention at 5 C rate over 1000 cycles.Moreover,with 5 wt%NaDB initially coated on the Na3V2(PO4)3(NVP)cathode,the capacity retention of NVP + NaDB|HC cell could increase from 22%to 89%after 1000 cycles at 1 C rate.This work provides a new avenue to improve reversible capacity and cycling performance of SIBs through designing functional cathode compensation agent.