In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This...In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.展开更多
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services...Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.展开更多
An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by...An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations.展开更多
A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,t...A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,the moving targets are detected by a magnetic sensor and classified with a simple computation method. The detection sensor is used for collecting a disturbance signal of earth magnetic field from an undetermined target. An optimum category match pattern of target signature is tested by training some statistical samples and designing a classification machine. Three ordinary targets are researched in the paper. The experimental results show that the algorithm has a low computation cost and a better sorting accuracy. This classification method can be applied to ground reconnaissance and target intrusion detection.展开更多
The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parall...The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parallel naive Bayes algorithm(PNBA)for Chinese text classification based on Spark,a parallel memory computing platform for big data.This algorithm has implemented parallel operation throughout the entire training and prediction process of naive Bayes classifier mainly by adopting the programming model of resilient distributed datasets(RDD).For comparison,a PNBA based on Hadoop is also implemented.The test results show that in the same computing environment and for the same text sets,the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup ratio and scalability.Therefore,Spark-based parallel algorithms can better meet the requirement of large-scale Chinese text data mining.展开更多
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of...To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.展开更多
The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,...The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,an anisotropic system based on China National Standard of BQ,named as A-BQ,is developed to address the classification of anisotropic rock mass incorporating the anisotropy degree as well as the quality of rock mass.Two series of basic rating factors are incorporated including inherent anisotropy and structure anisotropy.The anisotropy degree of rock mass is characterized by the ratio of maximum to minimum quality score and adjusted by the confining stress.The quality score of rock mass is determined by the key factors of anisotropic structure occurrence and the correction factors of stress state and groundwater condition.The quality of rock mass is characterized by a quality score and classified in five grades.The assessment of stability status and probable failure modes are also suggested for tunnel and slope engineering for different quality grades.Finally,two cases of tunnel and slope are presented to illustrate the application of the developed classification system into the rock masses under varied stress state.展开更多
In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the researc...In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.展开更多
Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that re...Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four mach...Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four machine learning algorithms,namely,decision tree(DT),random forest(RF),XGBoost(XGB),and LightGBM(LGBM),were implemented for the lithostratigraphic classification and lithostratigraphic prediction of a quaternary coverage area based on stream sediment geochemical sampling data in the Chahanwusu River of Dulan County,Qinghai Province,China.The local Moran’s I to represent the features of spatial autocorrelations,and terrain factors to represent the features of surface geological processes,were calculated as additional features.The accuracy,precision,recall,and F1 scores were chosen as the evaluation indices and Voronoi diagrams were applied for visualization.The results indicate that XGB and LGBM models both performed well.They not only obtained relatively satisfactory classification performance but also predicted lithostratigraphic types of the Quaternary coverage area that are essentially consistent with their neighborhoods which have the known types.It is feasible to classify the lithostratigraphic types through the concentrations of geochemical elements in the sediments,and the XGB and LGBM algorithms are recommended for lithostratigraphic classification.展开更多
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits o...On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.展开更多
Development of computational agent organizations or “societies” has become the domiant computing paradigm in the arena of Distributed Artificial Intelligence, and many foreseeable future applications need agent orga...Development of computational agent organizations or “societies” has become the domiant computing paradigm in the arena of Distributed Artificial Intelligence, and many foreseeable future applications need agent organizations, in which diversified agents cooperate in a distributed manner, forming teams. In such scenarios, the agents would need to know each other in order to facilitate the interactions. Moreover, agents in such an environment are not statically defined in advance but they can adaptively enter and leave an organization. This begs the question of how agents locate each other in order to cooperate in achieving organizational goals. Locating agents is a quite challenging task, especially in organizations that involve a large number of agents and where the resource avaiability is intermittent. The authors explore here an approach based on self organization map (SOM) which will serve as a clustering method in the light of the knowledge gathered about various agents. The approach begins by categorizing agents using a selected set of agent properties. These categories are used to derive various ranks and a distance matrix. The SOM algorithm uses this matrix as input to obtain clusters of agents. These clusters reduce the search space, resulting in a relatively short agent search time.展开更多
Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, a...Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, as well as offer time-frequency features for signal classification. Moreover, Karhunen-Loeve (K-L) transform is considered to extract signal features from ambiguity plane, and then the features are presented to probabilistic neural network (PNN) for signal classification. Experimental results show that ambiguity function eliminates the difference of center frequency and arriving time existing in ultrasonic signals, and ambiguity plane features extracted by K-L transform describe the signal of different classes effectively in a reduced dimensional space. Classification result suggests that the ambiguity plane features obtain better performance than the features extracted by wavelet transform (WT).展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane h...Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane heuristic based artificial immune network classification algorithm (DHPA1NC) is proposed. DHPAINC taboos the inner regions of the class domain, thus, the antibody generation is limited near the class domain boundary. Then, the antibodies are evaluated by their recognition abilities, and the antibodies of low recognition abilities are removed to avoid over-fitting. Finally, the high quality antibodies tend to be stable in the immune network. The algorithm was applied to two simulated datasets classification, and the results show that the decision hyper planes determined by the antibodies fit the class domain boundaries well. Moreover, the algorithm was applied to UCI datasets classification and emotional speech recognition, and the results show that the algorithm has good performance, which means that DHPAINC is a promising classifier.展开更多
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT...To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.展开更多
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl...In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.展开更多
This paper proposes a parity recognition of blade number and manoeuvre intention classification algorithm of rotor target based on the convolutional neural network(CNN) using micro Doppler features. Firstly, the time-...This paper proposes a parity recognition of blade number and manoeuvre intention classification algorithm of rotor target based on the convolutional neural network(CNN) using micro Doppler features. Firstly, the time-frequency spectrograms are acquired from the radar echo by the short-time Fourier transform.Secondly, based on the obtained spectrograms, a seven-layer CNN architecture is built to recognize the blade-number parity and classify the manoeuvre intention of the rotor target. The constructed architecture contains a leaky rectified linear unit and a dropout layer to accelerate the convergence of the architecture and avoid over-fitting. Finally, the spectrograms of the datasets are divided into three different ratios, i.e., 20%, 33% and 50%,and the cross validation is used to verify the effectiveness of the constructed CNN architecture. Simulation results show that, on the one hand, as the ratio of training data increases, the recognition accuracy of parity and manoeuvre intention is improved at the same signal-to-noise ratio(SNR);on the other hand, the proposed algorithm also has a strong robustness: the accuracy can still reach 90.72% with an SNR of – 6 dB.展开更多
基金Supported by the National Pre-research Program during the 14th Five-Year Plan(514010405)。
文摘In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.
文摘Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.
文摘An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations.
基金Sponsored by the National Natural Science Foundation of China (60773129)the Excellent Youth Science and Technology Foundation of Anhui Province of China ( 08040106808)
文摘A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,the moving targets are detected by a magnetic sensor and classified with a simple computation method. The detection sensor is used for collecting a disturbance signal of earth magnetic field from an undetermined target. An optimum category match pattern of target signature is tested by training some statistical samples and designing a classification machine. Three ordinary targets are researched in the paper. The experimental results show that the algorithm has a low computation cost and a better sorting accuracy. This classification method can be applied to ground reconnaissance and target intrusion detection.
基金Project(KC18071)supported by the Application Foundation Research Program of Xuzhou,ChinaProjects(2017YFC0804401,2017YFC0804409)supported by the National Key R&D Program of China
文摘The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parallel naive Bayes algorithm(PNBA)for Chinese text classification based on Spark,a parallel memory computing platform for big data.This algorithm has implemented parallel operation throughout the entire training and prediction process of naive Bayes classifier mainly by adopting the programming model of resilient distributed datasets(RDD).For comparison,a PNBA based on Hadoop is also implemented.The test results show that in the same computing environment and for the same text sets,the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup ratio and scalability.Therefore,Spark-based parallel algorithms can better meet the requirement of large-scale Chinese text data mining.
基金supported by the National Natural Science Foundation of China (60604021 60874054)
文摘To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.
基金Projects(41702345,41825018)supported by the National Natural Science Foundation of ChinaProject(2019QZKK0904)supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP),ChinaProject(KFZD-SW-422)supported by the Key Deployment Program of the Chinese Academy of Sciences。
文摘The rock mass in nature is in most cases anisotropic,while the existing classifications are mostly developed with the assumption of isotropic conditions that not always meet the engineering requirements.In this study,an anisotropic system based on China National Standard of BQ,named as A-BQ,is developed to address the classification of anisotropic rock mass incorporating the anisotropy degree as well as the quality of rock mass.Two series of basic rating factors are incorporated including inherent anisotropy and structure anisotropy.The anisotropy degree of rock mass is characterized by the ratio of maximum to minimum quality score and adjusted by the confining stress.The quality score of rock mass is determined by the key factors of anisotropic structure occurrence and the correction factors of stress state and groundwater condition.The quality of rock mass is characterized by a quality score and classified in five grades.The assessment of stability status and probable failure modes are also suggested for tunnel and slope engineering for different quality grades.Finally,two cases of tunnel and slope are presented to illustrate the application of the developed classification system into the rock masses under varied stress state.
基金supported by the National Natural Science Foundation of China(5110505261173163)the Liaoning Provincial Natural Science Foundation of China(201102037)
文摘In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金Projects(41772348,42072326)supported by the National Natural Science Foundation of ChinaProject(2017YFC0601503)supported by the National Key Research and Development Program,China。
文摘Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four machine learning algorithms,namely,decision tree(DT),random forest(RF),XGBoost(XGB),and LightGBM(LGBM),were implemented for the lithostratigraphic classification and lithostratigraphic prediction of a quaternary coverage area based on stream sediment geochemical sampling data in the Chahanwusu River of Dulan County,Qinghai Province,China.The local Moran’s I to represent the features of spatial autocorrelations,and terrain factors to represent the features of surface geological processes,were calculated as additional features.The accuracy,precision,recall,and F1 scores were chosen as the evaluation indices and Voronoi diagrams were applied for visualization.The results indicate that XGB and LGBM models both performed well.They not only obtained relatively satisfactory classification performance but also predicted lithostratigraphic types of the Quaternary coverage area that are essentially consistent with their neighborhoods which have the known types.It is feasible to classify the lithostratigraphic types through the concentrations of geochemical elements in the sediments,and the XGB and LGBM algorithms are recommended for lithostratigraphic classification.
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
基金supported by the National High Technology Research and Development Program (863 Program) (2010AA7080302)
文摘On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.
文摘Development of computational agent organizations or “societies” has become the domiant computing paradigm in the arena of Distributed Artificial Intelligence, and many foreseeable future applications need agent organizations, in which diversified agents cooperate in a distributed manner, forming teams. In such scenarios, the agents would need to know each other in order to facilitate the interactions. Moreover, agents in such an environment are not statically defined in advance but they can adaptively enter and leave an organization. This begs the question of how agents locate each other in order to cooperate in achieving organizational goals. Locating agents is a quite challenging task, especially in organizations that involve a large number of agents and where the resource avaiability is intermittent. The authors explore here an approach based on self organization map (SOM) which will serve as a clustering method in the light of the knowledge gathered about various agents. The approach begins by categorizing agents using a selected set of agent properties. These categories are used to derive various ranks and a distance matrix. The SOM algorithm uses this matrix as input to obtain clusters of agents. These clusters reduce the search space, resulting in a relatively short agent search time.
文摘Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, as well as offer time-frequency features for signal classification. Moreover, Karhunen-Loeve (K-L) transform is considered to extract signal features from ambiguity plane, and then the features are presented to probabilistic neural network (PNN) for signal classification. Experimental results show that ambiguity function eliminates the difference of center frequency and arriving time existing in ultrasonic signals, and ambiguity plane features extracted by K-L transform describe the signal of different classes effectively in a reduced dimensional space. Classification result suggests that the ambiguity plane features obtain better performance than the features extracted by wavelet transform (WT).
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
基金Foundation item: Projects(61170199, 60874070) supported by the National Natural Science Foundation of China Project(11A004) supported by the Major Project of Education Department in Hunan Province, China Project(2010GK3067) supported by Science and Technology Planning of Hunan Province, China
文摘Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane heuristic based artificial immune network classification algorithm (DHPA1NC) is proposed. DHPAINC taboos the inner regions of the class domain, thus, the antibody generation is limited near the class domain boundary. Then, the antibodies are evaluated by their recognition abilities, and the antibodies of low recognition abilities are removed to avoid over-fitting. Finally, the high quality antibodies tend to be stable in the immune network. The algorithm was applied to two simulated datasets classification, and the results show that the decision hyper planes determined by the antibodies fit the class domain boundaries well. Moreover, the algorithm was applied to UCI datasets classification and emotional speech recognition, and the results show that the algorithm has good performance, which means that DHPAINC is a promising classifier.
文摘To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.
基金Supported in part by Science & Technology Department of Shanghai (05dz15004)
文摘In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.
基金supported by the National Natural Science Foundation of China (61901514)the Young Talent Program of Air Force Early Warning Academy (TJRC425311G11)。
文摘This paper proposes a parity recognition of blade number and manoeuvre intention classification algorithm of rotor target based on the convolutional neural network(CNN) using micro Doppler features. Firstly, the time-frequency spectrograms are acquired from the radar echo by the short-time Fourier transform.Secondly, based on the obtained spectrograms, a seven-layer CNN architecture is built to recognize the blade-number parity and classify the manoeuvre intention of the rotor target. The constructed architecture contains a leaky rectified linear unit and a dropout layer to accelerate the convergence of the architecture and avoid over-fitting. Finally, the spectrograms of the datasets are divided into three different ratios, i.e., 20%, 33% and 50%,and the cross validation is used to verify the effectiveness of the constructed CNN architecture. Simulation results show that, on the one hand, as the ratio of training data increases, the recognition accuracy of parity and manoeuvre intention is improved at the same signal-to-noise ratio(SNR);on the other hand, the proposed algorithm also has a strong robustness: the accuracy can still reach 90.72% with an SNR of – 6 dB.