Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid ...Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment.展开更多
BACKGROUND: The effect of pituitary adenylate cyclase activating polypeptide (PACAP) during traumatic brain injury (TBI) and whether it can modulate secondary injury has not been reported previously. The present ...BACKGROUND: The effect of pituitary adenylate cyclase activating polypeptide (PACAP) during traumatic brain injury (TBI) and whether it can modulate secondary injury has not been reported previously. The present study evaluated the potential protective effects of ventricular infusion of PACAP in a rat model of TBI.METHODS: Male Sprague Dawley rats were randomly divided into 3 treatment groups (n=6, each): sham-operated, vehicle (normal saline)+TBI, and PACAP+TBI. Normal saline or PACAP (1 μg/5 μL) was administered intracerebroventricularly 20 minutes before TBI. Right parietal cortical contusion was produced via a weight-dropping method. Brains were extracted 24 hours after trauma. Histological changes in brains were examined by HE staining. The numbers of CD4+ and CD8+ T cells in blood and the spleen were detected via flow cytometry.RESULTS: In injured brain regions, edema, hemorrhage, inflammatory cell infiltration, and swollen and degenerated neurons were observed under a light microscope, and the neurons were disorderly arrayed in the hippocampi. Compared to the sham group, average CD4+ CD8+ lymphocyte counts in blood and the spleen were significantly decreased in rats that received TBl+vehicle, and CD4- CD8+ were increased. In rats administered PACAP prior to TBI, damage was attenuated as evidenced by significantly increased CD4+, and decreased CD8+, T lymphocytes in blood and the spleen.CONCLUSION: Pretreatment with PACAP may protect against TBI by influencing periphery T cellular immune function.展开更多
A simple and rapid method was established to study vascular permeability by in vitroperfused endothelial cell monolayers cultured on micropore filter membrane.It can be used todetermine filtration coefficient (K<s...A simple and rapid method was established to study vascular permeability by in vitroperfused endothelial cell monolayers cultured on micropore filter membrane.It can be used todetermine filtration coefficient (K<sub>f</sub>) to small molecules and osmotic reflection coefficient (σ) toproteins of the endothelial monolayer.Hanks’ balanced salt solution (HBSS) or 5g/L albuminin HBSS was used to perfuse the confluent endothelial monolayer at the hydrostatic pressure of2.45kPa (25cm H<sub>2</sub>O).Control K<sub>f</sub> values were 10.1±0.75 and 3.6±0.75μl·min<sup>-1</sup>·cm<sup>-2</sup>·kPa(-1)(±,n=3) respectively for the perfusion of HBSS and albumin HBSS,suggesting that al-bumin may decrease endothelial monolayer permeability to water and small molecules.After ex-posure of endothelial monolayer to 10<sup>-8</sup>mol/L platelet-activating factor (PAF) for 30min,K<sub>f</sub>values increased to 193.1% and 133.3% respectively.Protein clearance rate (μl.min<sup>-1</sup>·cm<sup>-2</sup>)and osmotic reflection coefficient of the control endothelial monolayer were 8.0±3.22 and 0.37±0.09 respectively and those of the PAF treated endothelial monolayer 12.2±2.95μl·min<sup>-1</sup>·cm<sup>-2</sup> and 0.18±0.06,revealing increased permeability to albumin.Computer-assisted imageprocessing demonstrated that PAF treatment decreased cell area while increased cell form factorand intercellular space,suggesting that endothelial cells retracted and rounded,which may bean important mechanism of PAF-induced increase of vascular permeability.展开更多
Effect of platelet activating factor(PAF) on blood spinal cord barrier in cervical cord injury was investigated. Methods: Spinal cord injury at C6 segment was induced with Allen’s ’method in cats. PAF and PAF recept...Effect of platelet activating factor(PAF) on blood spinal cord barrier in cervical cord injury was investigated. Methods: Spinal cord injury at C6 segment was induced with Allen’s ’method in cats. PAF and PAF receptor antagonist BN52021 were administered by arachnoid space and intravenous injection respectively, and their effects on PAF levels, blood spinal cord barrier and cervical cord edema in the injuried zone and adjacent cervical cord tissue following cervical cord injury were investigated. Results: PAF levels, Evens content and water content in the injuried and adjacent cervical cord tissues significantly increased following trauma. PAF levels, Evens content and water content were evidently elevated with PAF by arachnoid space injection. PAF receptor antagonist BN52021 could inhibit the increase in PAF levels and reduce Evens and water content in the cervical cord tissue following trauma. Conclusion: PAF is an important contributing factor causing post-traumatic damage to the blood spinal cord barrier, while PAF receptor antagonist can effectively relieve post-traumatic damage to the blood spinal cord barrier.展开更多
This paper presents four teaching techniques of activating the textbook for intensive reading which include:injecting contemporary elements into the text,relating the text to students' life,questioning about the t...This paper presents four teaching techniques of activating the textbook for intensive reading which include:injecting contemporary elements into the text,relating the text to students' life,questioning about the text challengingly and ingeniously,and spicing up the text.展开更多
Lime, which is a frequently used activating agent of fly ash (FA), has two main states: slaked lime and quick lime. We studied the effects of slaked lime and quick lime on activating FA, and discussed their kinetics. ...Lime, which is a frequently used activating agent of fly ash (FA), has two main states: slaked lime and quick lime. We studied the effects of slaked lime and quick lime on activating FA, and discussed their kinetics. The results show that slaked lime is more beneficial for activating FA than quick lime given the condition of equivalent CaO amount. The use of slaked lime has superiority in technology and economy on activating FA. Theoretical analysis revealed that the kinetic constant of the activation reaction using slaked lime is higher than using quick lime, credited to the better volume stability and fineness, and smaller water demand of slaked lime.展开更多
Ammonia(NH3)is not only an important chemical in many fields,but also provides a promising intermediate for energy stor-age[1,2].To produce NH3 from naturally abundant N2,the strong N≡N bond in the inert N2 molecules...Ammonia(NH3)is not only an important chemical in many fields,but also provides a promising intermediate for energy stor-age[1,2].To produce NH3 from naturally abundant N2,the strong N≡N bond in the inert N2 molecules must be broken firstly.展开更多
Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ...Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.展开更多
Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has ...Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.展开更多
Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy densi...Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy density.However,the all-solid-state batteries with nickel-rich oxide cathodes suffer from performance degradation due to the reactions between the highly reactive surface oxygen of the cathode and the electrolyte,as well as the instability of the bulk oxygen structure in the cathode.Herein,we propose a synergistic modification design scheme to adjust the oxygen activity from surface to bulk.The LiBO_(2)coating inhibits the reactivity of surface lattice oxygen ions.Meanwhile,Zr doping in the bulk phase forms strong Zr-O covalent bonds that stabilize the bulk lattice oxygen structure.The synergistic effect of these modifications prevents the release of oxygen,thus avoiding the degradation of the cathode/SE interface.Additionally,the regulation of surface-to-bulk oxygen activity establishes a highly stable interface,thereby enhancing the lithium ion diffusion kinetics and mechanical stability of the cathode.Consequently,cathodes modified with this synergistic strategy exhibit outstanding performance in sulfide-based ASSLBs,including an ultra-long cycle life of 100,000 cycles,ultra-high rate capability at 45C,and 85% high active material content in the composite cathode.Additionally,ASSLB exhibits stable cycling under high loading conditions of 82.82 mg cm^(-2),achieving an areal capacity of 17.90 mA h cm^(-2).These encouraging results pave the way for practical applications of ASSLBs in fast charging,long cycle life,and high energy density in the future.展开更多
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o...Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.展开更多
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
Inspired by molecular catalysts,researchers developed atomically precise nitrogen-coordinated single or dual metal sites imbedded in graphitized carbon(M-N-C)to fully utilize metallic sites for 02activation.These cata...Inspired by molecular catalysts,researchers developed atomically precise nitrogen-coordinated single or dual metal sites imbedded in graphitized carbon(M-N-C)to fully utilize metallic sites for 02activation.These catalysts performed remarkably well in the electrocatalytic oxygen reduction reaction(ORR)due to their distinct coordination and electrical structures,Nonetheless,their maximum efficacy in practical applications has yet to be achieved.This agenda identifies tailoring the coordination environment,spin states,intersite distance,and metal-metal interaction as innovative approaches to regulate the ORR performance of these catalysts.However,it is necessary to undertake a precise assessment of these methodologies and the knowledge obtained to be implemented in the design of future M-N-C catalysts for ORR.Therefore,this review aims to analyze recent progress in M-N-C ORR catalysts,emphasizing their innovative engineering with aspects such as alteration in intersite distance,metal-metal interaction,coordination environment,and spin states.Additionally,we critically discuss how to logically monitor the atomic structure,local coordination,spin,and electronic states of M-N-C catalysts to modulate their ORR activity.We have also highlighted the challenges associated with M-N-C catalysts and proposed suggestions for their future design and fabrication.展开更多
Defatted hickory meal(DHM),a by-product of hickory oil production,is a protein source rich in essential amino acids.In this study,the functional properties of DHM hydrolysate(DHMH)were assessed using in vitro and in v...Defatted hickory meal(DHM),a by-product of hickory oil production,is a protein source rich in essential amino acids.In this study,the functional properties of DHM hydrolysate(DHMH)were assessed using in vitro and in vivo assays in context to its antioxidant and memory-enhancing effects.To induce memory impairment,D-galactose(D-gal)was administered to mice at a dose of 120 mg/kg body weight per day,and DHMH was orally administered at doses of 300,600,and 1000 mg/kg body weight per day for 8 weeks.DHMH treatment led to improved memory performance in D-ga-induced memory-impaired mice,as observed in the Morris water maze test.Furthermore,DHMH mitigated the accumulation of amyloidβ_(1-42)triggered by D-gal exposure.Notably,high-dose DHMH significantly reduced the elevation of pro-inflammatory markers,including tumor necrosis factor alpha,interleukin 1β,and interleukin 6.Additionally,DHMH prevented the decline in total superoxide dismutase activity,glutathione peroxidase activity,and glutathione levels,while reducing malondialdehyde content in D-gal-induced mice,indicative of its antioxidant properties.Moreover,DHMH treatment effectively prevented histological alterations in neurons within the hippocampal CA1 area induced by D-gal.Collectively,our findings suggest that DHMH may counteract memory dysfunctions resulting from oxidative stress injury in the brain positioning it as a potential candidate for use as a functional food.展开更多
A novel low molecular weight compound polysaccharide(LMW-CPS) was identified from a specific combination of Chinese herb ingredients.The monosaccharide composition of LMW-CPS was consisted of single arabinose,which ha...A novel low molecular weight compound polysaccharide(LMW-CPS) was identified from a specific combination of Chinese herb ingredients.The monosaccharide composition of LMW-CPS was consisted of single arabinose,which had an α-L-furanose configuration with an average molecular weight of 2.06 kDa.NMR spectra and monosaccharide constitution analyses revealed that it had a backbone of→5)-α-L-Araf-(1→with α-L-Araf(1→as the terminal residue.In vitro experiments found that it could lead to apoptosis and inhibit hepatocellular carcinoma cell proliferation by arresting them in the S phase.In vivo experiments showed that it protected immune organs such as the thymus and spleen,enhanced immune cell activities,stimulated cytokine release,augmented the abundance of CD8,CD3,CD4,and CD 19 positive lymphocytes,and markedly impeded solid hepatocellular carcinoma progression in mice.Hematoxylin and eosin staining and cell cycle examination also indicated that LMW-CPS arrested hepatocellular carcinoma cells at the S phase to induce apoptosis.These findings indicated its promising potential for the treatment of hepatocellular carcinoma.展开更多
Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption,ultimately resulting in implant failure.Dental implants for clinical use barely have antibacterial pr...Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption,ultimately resulting in implant failure.Dental implants for clinical use barely have antibacterial properties,and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis.Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque.However,it is particularly important to prevent the occurrence of peri-implantitis rather than treatment.Therefore,the current research spot has focused on improving the antibacterial properties of dental implants,such as the construction of specific micro-nano surface texture,the introduction of diverse functional coatings,or the application of materials with intrinsic antibacterial properties.The aforementioned antibacterial surfaces can be incorporated with bioactive molecules,metallic nanoparticles,or other functional components to further enhance the osteogenic properties and accelerate the healing process.In this review,we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration.Furthermore,we summarized the obstacles existing in the process of laboratory research to reach the clinic products,and propose corresponding directions for future developments and research perspectives,so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy,biological safety,and osteogenic property.展开更多
In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the p...In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the precipitation of insoluble products covered cathode surface and the slow reaction kinetics.Therefore,a method using a simple one-step hydrothermal preparation and oxalic acid to regulate oxygen vacancies has been reported.A high starting capacity(400 mAh g^(-1))can be achieved by Ov-V2O5,and it is capable of undergoing 200 cycles at 0.4 A g^(-1),with a termination discharge capacity of103 mAh g^(-1).Mechanism analysis demonstrated that metastable structures(AlxV2O5and HxV2O5)were constructed through the insertion of Al^(3+)/H^(+)during discharging,which existed in the lattice intercalation with V2O5.The incorporation of oxygen vacancies lowers the reaction energy barrier while improving the ion transport efficiency.In addition,the metastable structure allows the electrostatic interaction between Al3+and the main backbone to establish protection and optimize the transport channel.In parallel,this work exploits ex-situ characterization and DFT to obtain a profound insight into the instrumental effect of oxygen vacancies in the construction of metastable structures during in-situ electrochemical activation,with a view to better understanding the mechanism of the synergistic participation of Al3+and H+in the reaction.This work not only reports a method for cathode materials to modulate oxygen vacancies,but also lays the foundation for a deeper understanding of the metastable structure of vanadium oxides.展开更多
This work aims to compare the chemical composition and anti-inflammatory effects on RAW264.7 macrophages of Keemun black tea stems and leaves.A total of 50 volatile compounds were identified in tea stems and leaves,an...This work aims to compare the chemical composition and anti-inflammatory effects on RAW264.7 macrophages of Keemun black tea stems and leaves.A total of 50 volatile compounds were identified in tea stems and leaves,and aldehydes,alcohols,and esters were the main volatile compound categories.There were 11 key volatile compounds,including geraniol,benzeneacetaldehyde,methyl salicylate,linalool,etc.contributed to distinguishing the tea stems from the tea leaves.In the quantitative and liquid chromatography-mass spectrometry(LC-MS)-based metabolomics analysis,higher contents of amino acids,monosaccharides,and quinic acids were found in stems than those in leaves.Inversely,higher contents of tea pigments,flavan-3-ols,gallic acid,purine alkaloids,and flavonol glycosides were present in tea leaves than in stems.LC-MS-based metabolomics also revealed that organic acids were the most critical non-volatile compounds responsible for the differences between tea stems and leaves.Furthermore,tea stems had better inhibiting effects of pro-inflammatory cytokines(interleukin(IL)-1βand IL-6)in lipopolysaccharide-challenged RAW264.7 macrophages than tea leaves,while no significant differences exist between leaves and stems for inhibiting the secretion of tumor necrosis factorα(TNF-α)and NO.In conclusion,our results support using Keemun black tea stems as a novel source of anti-inflammatory compounds.展开更多
In this study,polysaccharides were extracted from blueberry fruit(BFP)and isolated to 3 components(BFP-1,BFP-2 and BFP-3).The molecular weight,monosaccharide composition,characteristic groups,microscopic morphology,an...In this study,polysaccharides were extracted from blueberry fruit(BFP)and isolated to 3 components(BFP-1,BFP-2 and BFP-3).The molecular weight,monosaccharide composition,characteristic groups,microscopic morphology,and triple helical conformation of the polysaccharides were characterized using high performance permeation chromatography,high performance liquid chromatography,gas chromatographymass spectrometry,Fourier transform infrared spectrometer,scanning electron microscope and Congo red staining.Moreover,the hypolipidemic and immunological activities of the polysaccharides were also assessed.Results showed that the molecular weights of polysaccharides BFP-1,BFP-2,and BFP-3 were 5.547×10^(4),5.671×10^(4),and 3.951×10^(4)Da,respectively,the main monosaccharides were glucose(Glc),galactose(Gal)and arabinose(Ara),but BFP-3 was mainly composed of galacturonic acid(Gal A),Glc,Gal,and Ara.The backbone of BFP-1 was→4)-Glcp-(1→,which branches to Ara and xylose(Xyl)residues,while the backbone of BFP-2 was→5)-Araf-(1→,which branches to Xyl,Glc,rhamnose(Rha)and Gal residues,in particularly,BFP-3 has a more complex branching with a→3,6)-Galp-(1→)backbone,the side chain is dominated by Araf-(1→).Blueberry polysaccharides are pyran-type polysaccharides withα-glycosidic bonds,and BFP-1 has a typical triple-helical structure.The activity assay revealed that the binding of BFP-3 to sodium glycylcholate hydrate and sodium taurocholate was 79.95%and 78.50%,respectively,indicating that it had better hypolipidemic activity than the others.Immunoactivity assay showed that BFP promoted NO secretion through activating the NF-κB signalling pathway in RAW264.7 cells,which played a role in enhancing the immune function of the organism.These findings may provide a reference for the development and application of blueberry polysaccharides in functional food and medicine.展开更多
Dynamical systems often exhibit multiple attractors representing significantly different functioning conditions.A global map of attraction basins can offer valuable guidance for stabilizing or transitioning system sta...Dynamical systems often exhibit multiple attractors representing significantly different functioning conditions.A global map of attraction basins can offer valuable guidance for stabilizing or transitioning system states.Such a map can be constructed without prior system knowledge by identifying attractors across a sufficient number of points in the state space.However,determining the attractor for each initial state can be a laborious task.Here,we tackle the challenge of reconstructing attraction basins using as few initial points as possible.In each iteration of our approach,informative points are selected through random seeding and are driven along the current classification boundary,promoting the eventual selection of points that are both diverse and enlightening.The results across various experimental dynamical systems demonstrate that our approach requires fewer points than baseline methods while achieving comparable mapping accuracy.Additionally,the reconstructed map allows us to accurately estimate the minimum escape distance required to transition the system state to a target basin.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(81973316,82173807)the China Postdoctoral Science Foundation(2020M681914)+1 种基金the Fund from Tianjin Municipal Health Commission(ZC200093)the Open Fund of Tianjin Central Hospital of Obstetrics and Gynecology/Tianjin Key Laboratory of human development and reproductive regulation(2021XHY01)。
文摘Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment.
文摘BACKGROUND: The effect of pituitary adenylate cyclase activating polypeptide (PACAP) during traumatic brain injury (TBI) and whether it can modulate secondary injury has not been reported previously. The present study evaluated the potential protective effects of ventricular infusion of PACAP in a rat model of TBI.METHODS: Male Sprague Dawley rats were randomly divided into 3 treatment groups (n=6, each): sham-operated, vehicle (normal saline)+TBI, and PACAP+TBI. Normal saline or PACAP (1 μg/5 μL) was administered intracerebroventricularly 20 minutes before TBI. Right parietal cortical contusion was produced via a weight-dropping method. Brains were extracted 24 hours after trauma. Histological changes in brains were examined by HE staining. The numbers of CD4+ and CD8+ T cells in blood and the spleen were detected via flow cytometry.RESULTS: In injured brain regions, edema, hemorrhage, inflammatory cell infiltration, and swollen and degenerated neurons were observed under a light microscope, and the neurons were disorderly arrayed in the hippocampi. Compared to the sham group, average CD4+ CD8+ lymphocyte counts in blood and the spleen were significantly decreased in rats that received TBl+vehicle, and CD4- CD8+ were increased. In rats administered PACAP prior to TBI, damage was attenuated as evidenced by significantly increased CD4+, and decreased CD8+, T lymphocytes in blood and the spleen.CONCLUSION: Pretreatment with PACAP may protect against TBI by influencing periphery T cellular immune function.
文摘A simple and rapid method was established to study vascular permeability by in vitroperfused endothelial cell monolayers cultured on micropore filter membrane.It can be used todetermine filtration coefficient (K<sub>f</sub>) to small molecules and osmotic reflection coefficient (σ) toproteins of the endothelial monolayer.Hanks’ balanced salt solution (HBSS) or 5g/L albuminin HBSS was used to perfuse the confluent endothelial monolayer at the hydrostatic pressure of2.45kPa (25cm H<sub>2</sub>O).Control K<sub>f</sub> values were 10.1±0.75 and 3.6±0.75μl·min<sup>-1</sup>·cm<sup>-2</sup>·kPa(-1)(±,n=3) respectively for the perfusion of HBSS and albumin HBSS,suggesting that al-bumin may decrease endothelial monolayer permeability to water and small molecules.After ex-posure of endothelial monolayer to 10<sup>-8</sup>mol/L platelet-activating factor (PAF) for 30min,K<sub>f</sub>values increased to 193.1% and 133.3% respectively.Protein clearance rate (μl.min<sup>-1</sup>·cm<sup>-2</sup>)and osmotic reflection coefficient of the control endothelial monolayer were 8.0±3.22 and 0.37±0.09 respectively and those of the PAF treated endothelial monolayer 12.2±2.95μl·min<sup>-1</sup>·cm<sup>-2</sup> and 0.18±0.06,revealing increased permeability to albumin.Computer-assisted imageprocessing demonstrated that PAF treatment decreased cell area while increased cell form factorand intercellular space,suggesting that endothelial cells retracted and rounded,which may bean important mechanism of PAF-induced increase of vascular permeability.
文摘Effect of platelet activating factor(PAF) on blood spinal cord barrier in cervical cord injury was investigated. Methods: Spinal cord injury at C6 segment was induced with Allen’s ’method in cats. PAF and PAF receptor antagonist BN52021 were administered by arachnoid space and intravenous injection respectively, and their effects on PAF levels, blood spinal cord barrier and cervical cord edema in the injuried zone and adjacent cervical cord tissue following cervical cord injury were investigated. Results: PAF levels, Evens content and water content in the injuried and adjacent cervical cord tissues significantly increased following trauma. PAF levels, Evens content and water content were evidently elevated with PAF by arachnoid space injection. PAF receptor antagonist BN52021 could inhibit the increase in PAF levels and reduce Evens and water content in the cervical cord tissue following trauma. Conclusion: PAF is an important contributing factor causing post-traumatic damage to the blood spinal cord barrier, while PAF receptor antagonist can effectively relieve post-traumatic damage to the blood spinal cord barrier.
文摘This paper presents four teaching techniques of activating the textbook for intensive reading which include:injecting contemporary elements into the text,relating the text to students' life,questioning about the text challengingly and ingeniously,and spicing up the text.
基金Funded by Natural Science Foundation of China under the grant No. 50672137
文摘Lime, which is a frequently used activating agent of fly ash (FA), has two main states: slaked lime and quick lime. We studied the effects of slaked lime and quick lime on activating FA, and discussed their kinetics. The results show that slaked lime is more beneficial for activating FA than quick lime given the condition of equivalent CaO amount. The use of slaked lime has superiority in technology and economy on activating FA. Theoretical analysis revealed that the kinetic constant of the activation reaction using slaked lime is higher than using quick lime, credited to the better volume stability and fineness, and smaller water demand of slaked lime.
基金financial support from the National Natural Science Foundation of China(51702352,21975280)the Key Research Program of Frontier Sciences,CAS(QYZDB-SSWSLH034)+3 种基金the Youth Innovation Promotion Association Chinese Academy of Sciences(20200354)the Guangdong Special Support Program(2017TX04C096),the Leading Talents of Guangdong Province Program(00201520)the Guangdong Basic and Applied Basic Research Fund(2019A1515111062)the City University of Hong Kong Strategic Research Grant(SRG)(Nos.7005105 and 7005264)。
文摘Ammonia(NH3)is not only an important chemical in many fields,but also provides a promising intermediate for energy stor-age[1,2].To produce NH3 from naturally abundant N2,the strong N≡N bond in the inert N2 molecules must be broken firstly.
基金supported by the National Natural Science Foundation of China(No.51972162)the Fundamental Research Funds for the Central Universities(No.2024300440).
文摘Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.
基金funded by the National Key R&D Program of China(2021YFA1501101)the National Natural Science Foundation of China(No.22471103,22425105,22201111,21931001,22221001,and 22271124)+5 种基金Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province(2019ZX-04)the 111 Project(B20027)as well as the National Natural Science Foundation of Gansu Province(22JR5RA470)the Fundamental Research Funds for the Central Universities(lzujbky-2023-eyt03)supported by the Agency for Science,Technology and Research(A*STAR)MTC Individual Research Grants(IRG)M22K2c0078.
文摘Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.
基金financially supported by the National Natural Science Foundation of China (52474338,22109084 and 52304338)the Hunan Provincial Key Research and Development Program (2024JK2093,2023GK2016)supported in part by the High Performance Computing Center of Central South University.
文摘Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy density.However,the all-solid-state batteries with nickel-rich oxide cathodes suffer from performance degradation due to the reactions between the highly reactive surface oxygen of the cathode and the electrolyte,as well as the instability of the bulk oxygen structure in the cathode.Herein,we propose a synergistic modification design scheme to adjust the oxygen activity from surface to bulk.The LiBO_(2)coating inhibits the reactivity of surface lattice oxygen ions.Meanwhile,Zr doping in the bulk phase forms strong Zr-O covalent bonds that stabilize the bulk lattice oxygen structure.The synergistic effect of these modifications prevents the release of oxygen,thus avoiding the degradation of the cathode/SE interface.Additionally,the regulation of surface-to-bulk oxygen activity establishes a highly stable interface,thereby enhancing the lithium ion diffusion kinetics and mechanical stability of the cathode.Consequently,cathodes modified with this synergistic strategy exhibit outstanding performance in sulfide-based ASSLBs,including an ultra-long cycle life of 100,000 cycles,ultra-high rate capability at 45C,and 85% high active material content in the composite cathode.Additionally,ASSLB exhibits stable cycling under high loading conditions of 82.82 mg cm^(-2),achieving an areal capacity of 17.90 mA h cm^(-2).These encouraging results pave the way for practical applications of ASSLBs in fast charging,long cycle life,and high energy density in the future.
基金supported from Science and Technology Development Program of Jilin Province(Nos.20240101128JC,20230402058GH)National Natural Science Foundation of China(No.52130101).
文摘Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
基金supported by the Research Fund for International Scientists(RFIS-Grant numbers:52150410410)National Natural Science Foundation of Chinathe Deanship of Scientific Research and Graduate Studies at King Khalid University for funding this research work through Large Research Project under the grant number RGP2/121/1445.
文摘Inspired by molecular catalysts,researchers developed atomically precise nitrogen-coordinated single or dual metal sites imbedded in graphitized carbon(M-N-C)to fully utilize metallic sites for 02activation.These catalysts performed remarkably well in the electrocatalytic oxygen reduction reaction(ORR)due to their distinct coordination and electrical structures,Nonetheless,their maximum efficacy in practical applications has yet to be achieved.This agenda identifies tailoring the coordination environment,spin states,intersite distance,and metal-metal interaction as innovative approaches to regulate the ORR performance of these catalysts.However,it is necessary to undertake a precise assessment of these methodologies and the knowledge obtained to be implemented in the design of future M-N-C catalysts for ORR.Therefore,this review aims to analyze recent progress in M-N-C ORR catalysts,emphasizing their innovative engineering with aspects such as alteration in intersite distance,metal-metal interaction,coordination environment,and spin states.Additionally,we critically discuss how to logically monitor the atomic structure,local coordination,spin,and electronic states of M-N-C catalysts to modulate their ORR activity.We have also highlighted the challenges associated with M-N-C catalysts and proposed suggestions for their future design and fabrication.
基金supported by the Key Research and Development Project of Hanzhou(20231203A03)。
文摘Defatted hickory meal(DHM),a by-product of hickory oil production,is a protein source rich in essential amino acids.In this study,the functional properties of DHM hydrolysate(DHMH)were assessed using in vitro and in vivo assays in context to its antioxidant and memory-enhancing effects.To induce memory impairment,D-galactose(D-gal)was administered to mice at a dose of 120 mg/kg body weight per day,and DHMH was orally administered at doses of 300,600,and 1000 mg/kg body weight per day for 8 weeks.DHMH treatment led to improved memory performance in D-ga-induced memory-impaired mice,as observed in the Morris water maze test.Furthermore,DHMH mitigated the accumulation of amyloidβ_(1-42)triggered by D-gal exposure.Notably,high-dose DHMH significantly reduced the elevation of pro-inflammatory markers,including tumor necrosis factor alpha,interleukin 1β,and interleukin 6.Additionally,DHMH prevented the decline in total superoxide dismutase activity,glutathione peroxidase activity,and glutathione levels,while reducing malondialdehyde content in D-gal-induced mice,indicative of its antioxidant properties.Moreover,DHMH treatment effectively prevented histological alterations in neurons within the hippocampal CA1 area induced by D-gal.Collectively,our findings suggest that DHMH may counteract memory dysfunctions resulting from oxidative stress injury in the brain positioning it as a potential candidate for use as a functional food.
基金supported by the National Key Research and Development Program of China (2022YFF1100904)the Tianjin Key R&D Program (21YFSNSN00110)+2 种基金the Science and Technology Planning Project of State Administration for Market Regulation (2019MK005, 2020MK010, 2022MK012)Tianjin Administration for Market Regulation (2019-W20)State Criteria for Food Safety (spaq-2020-08, spaq-2020-31, spaq-2021-07, spaq-2022-05)。
文摘A novel low molecular weight compound polysaccharide(LMW-CPS) was identified from a specific combination of Chinese herb ingredients.The monosaccharide composition of LMW-CPS was consisted of single arabinose,which had an α-L-furanose configuration with an average molecular weight of 2.06 kDa.NMR spectra and monosaccharide constitution analyses revealed that it had a backbone of→5)-α-L-Araf-(1→with α-L-Araf(1→as the terminal residue.In vitro experiments found that it could lead to apoptosis and inhibit hepatocellular carcinoma cell proliferation by arresting them in the S phase.In vivo experiments showed that it protected immune organs such as the thymus and spleen,enhanced immune cell activities,stimulated cytokine release,augmented the abundance of CD8,CD3,CD4,and CD 19 positive lymphocytes,and markedly impeded solid hepatocellular carcinoma progression in mice.Hematoxylin and eosin staining and cell cycle examination also indicated that LMW-CPS arrested hepatocellular carcinoma cells at the S phase to induce apoptosis.These findings indicated its promising potential for the treatment of hepatocellular carcinoma.
基金supported by the National Key Research and Development Program of China(2023YFC2412600)the National Natural Science Foundation of China(52271243,52171233,82370924,82170929)+3 种基金the Beijing Natural Science Foundation(L212014)the Beijing Nova Program(20230484459)the National Clinical Key Discipline Construction Project(PKUSSNKP-T202103)the Research Foundation of Peking University School and Hospital of Stomatology(PKSS20230104).
文摘Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption,ultimately resulting in implant failure.Dental implants for clinical use barely have antibacterial properties,and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis.Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque.However,it is particularly important to prevent the occurrence of peri-implantitis rather than treatment.Therefore,the current research spot has focused on improving the antibacterial properties of dental implants,such as the construction of specific micro-nano surface texture,the introduction of diverse functional coatings,or the application of materials with intrinsic antibacterial properties.The aforementioned antibacterial surfaces can be incorporated with bioactive molecules,metallic nanoparticles,or other functional components to further enhance the osteogenic properties and accelerate the healing process.In this review,we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration.Furthermore,we summarized the obstacles existing in the process of laboratory research to reach the clinic products,and propose corresponding directions for future developments and research perspectives,so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy,biological safety,and osteogenic property.
基金financially supported by the National Natural Science Foundation of China(52102233)Science and Technology Project of Hebei Education Department(QN2023019).
文摘In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the precipitation of insoluble products covered cathode surface and the slow reaction kinetics.Therefore,a method using a simple one-step hydrothermal preparation and oxalic acid to regulate oxygen vacancies has been reported.A high starting capacity(400 mAh g^(-1))can be achieved by Ov-V2O5,and it is capable of undergoing 200 cycles at 0.4 A g^(-1),with a termination discharge capacity of103 mAh g^(-1).Mechanism analysis demonstrated that metastable structures(AlxV2O5and HxV2O5)were constructed through the insertion of Al^(3+)/H^(+)during discharging,which existed in the lattice intercalation with V2O5.The incorporation of oxygen vacancies lowers the reaction energy barrier while improving the ion transport efficiency.In addition,the metastable structure allows the electrostatic interaction between Al3+and the main backbone to establish protection and optimize the transport channel.In parallel,this work exploits ex-situ characterization and DFT to obtain a profound insight into the instrumental effect of oxygen vacancies in the construction of metastable structures during in-situ electrochemical activation,with a view to better understanding the mechanism of the synergistic participation of Al3+and H+in the reaction.This work not only reports a method for cathode materials to modulate oxygen vacancies,but also lays the foundation for a deeper understanding of the metastable structure of vanadium oxides.
基金supported by the Natural Science Foundation of China(32122079,32072633)Earmarked Fund for China Agriculture Research System(CARS-19)+2 种基金Anhui Key Research and Development Plan(202104b11020001)Young Elite Scientist Sponsorship Program by National CAST(2016QNRC001)High-level Introduced Talent Sponsorship Program by Anhui Agricultural University(rc352203)。
文摘This work aims to compare the chemical composition and anti-inflammatory effects on RAW264.7 macrophages of Keemun black tea stems and leaves.A total of 50 volatile compounds were identified in tea stems and leaves,and aldehydes,alcohols,and esters were the main volatile compound categories.There were 11 key volatile compounds,including geraniol,benzeneacetaldehyde,methyl salicylate,linalool,etc.contributed to distinguishing the tea stems from the tea leaves.In the quantitative and liquid chromatography-mass spectrometry(LC-MS)-based metabolomics analysis,higher contents of amino acids,monosaccharides,and quinic acids were found in stems than those in leaves.Inversely,higher contents of tea pigments,flavan-3-ols,gallic acid,purine alkaloids,and flavonol glycosides were present in tea leaves than in stems.LC-MS-based metabolomics also revealed that organic acids were the most critical non-volatile compounds responsible for the differences between tea stems and leaves.Furthermore,tea stems had better inhibiting effects of pro-inflammatory cytokines(interleukin(IL)-1βand IL-6)in lipopolysaccharide-challenged RAW264.7 macrophages than tea leaves,while no significant differences exist between leaves and stems for inhibiting the secretion of tumor necrosis factorα(TNF-α)and NO.In conclusion,our results support using Keemun black tea stems as a novel source of anti-inflammatory compounds.
基金financial support received from the Anhui Provincial Excellent Scientific Research and Innovation Team(2023AH010050)the Key Research and Development Plan of Anhui Province(202204c06020013,202204c06020029)+1 种基金the“Biology and Medicine”key subject of Hefei University(2023xk05)the open research project of Anhui Ecological Fermentation Engineering Research Center for Functional Fruit Beverage(FSKFKT015)。
文摘In this study,polysaccharides were extracted from blueberry fruit(BFP)and isolated to 3 components(BFP-1,BFP-2 and BFP-3).The molecular weight,monosaccharide composition,characteristic groups,microscopic morphology,and triple helical conformation of the polysaccharides were characterized using high performance permeation chromatography,high performance liquid chromatography,gas chromatographymass spectrometry,Fourier transform infrared spectrometer,scanning electron microscope and Congo red staining.Moreover,the hypolipidemic and immunological activities of the polysaccharides were also assessed.Results showed that the molecular weights of polysaccharides BFP-1,BFP-2,and BFP-3 were 5.547×10^(4),5.671×10^(4),and 3.951×10^(4)Da,respectively,the main monosaccharides were glucose(Glc),galactose(Gal)and arabinose(Ara),but BFP-3 was mainly composed of galacturonic acid(Gal A),Glc,Gal,and Ara.The backbone of BFP-1 was→4)-Glcp-(1→,which branches to Ara and xylose(Xyl)residues,while the backbone of BFP-2 was→5)-Araf-(1→,which branches to Xyl,Glc,rhamnose(Rha)and Gal residues,in particularly,BFP-3 has a more complex branching with a→3,6)-Galp-(1→)backbone,the side chain is dominated by Araf-(1→).Blueberry polysaccharides are pyran-type polysaccharides withα-glycosidic bonds,and BFP-1 has a typical triple-helical structure.The activity assay revealed that the binding of BFP-3 to sodium glycylcholate hydrate and sodium taurocholate was 79.95%and 78.50%,respectively,indicating that it had better hypolipidemic activity than the others.Immunoactivity assay showed that BFP promoted NO secretion through activating the NF-κB signalling pathway in RAW264.7 cells,which played a role in enhancing the immune function of the organism.These findings may provide a reference for the development and application of blueberry polysaccharides in functional food and medicine.
基金supported by the National Natural Science Foundation of China(Grant Nos.T2225022,12350710786,62088101,and 12161141016)Shuguang Program of Shanghai Education Development Foundation(Grant No.22SG21)Shanghai Municipal Education Commission,and the Fundamental Research Funds for the Central Universities。
文摘Dynamical systems often exhibit multiple attractors representing significantly different functioning conditions.A global map of attraction basins can offer valuable guidance for stabilizing or transitioning system states.Such a map can be constructed without prior system knowledge by identifying attractors across a sufficient number of points in the state space.However,determining the attractor for each initial state can be a laborious task.Here,we tackle the challenge of reconstructing attraction basins using as few initial points as possible.In each iteration of our approach,informative points are selected through random seeding and are driven along the current classification boundary,promoting the eventual selection of points that are both diverse and enlightening.The results across various experimental dynamical systems demonstrate that our approach requires fewer points than baseline methods while achieving comparable mapping accuracy.Additionally,the reconstructed map allows us to accurately estimate the minimum escape distance required to transition the system state to a target basin.