An automatic monitoring technique of the seepage line, including the monitoring design, the automatic monitoring system and the backfill technique of the measuring probe of pore-water pressure, was used in a tailings ...An automatic monitoring technique of the seepage line, including the monitoring design, the automatic monitoring system and the backfill technique of the measuring probe of pore-water pressure, was used in a tailings dam, and a shallow refractive seismic method was investigated for obtaining the seepage line of those areas outside the monitoring zone. The results show that the automatic monitoring has the error within ±3% relative to piezometric tube method and improves monitoring efficiency greatly, and the shallow refractive seismic method has the error within ±10% but expands the area of monitoring. Both of them can be used for a daily measurement in monitoring the seepage line. The result of the automatic monitoring also shows that not only the design of the survey line and the backfill technique of the measuring probe of pore-water pressure are reasonable and economic but also the reliability and safety of the automatic monitoring system are better. Testing result by the shallow refractive seismic method in tailings reveals that the energy excited by hammering iron sheet-pole is strong enough and safe, and that the character of anti-jamming by the detectors with long tailcone is better.展开更多
Overhead lines are the backbone of the electrical power transmission.Contrary to the distributions networks,the transmission system consists only in exceptional cases of longer cable lines.Typical exceptions are conne...Overhead lines are the backbone of the electrical power transmission.Contrary to the distributions networks,the transmission system consists only in exceptional cases of longer cable lines.Typical exceptions are connections of cavern power plants,approaches to airports or bird sanctuaries and lines in urban centres.In the majority of cases,an overhead line is the most economic and practicable solution for the energy transmission.In tourism regions,an overhead line will be seen as impairment of nature or landscape and so the approval chain and procedure is in most countries long-winded and circumstantial.At the other hand,the energy consumption in Europe is growing and the volatility of transmitted power is also increasing during the last decade caused by the opening of the electric energy market.This opening process leads to a stopping of the enlargement of the interoperation network and to a minimisation of the maintenance of existing lines.Today the network operates more often at the limit of the equipment and the small and large-areas disturbances and blackouts are increasing.The operators of transmission lines are forced to ensure the electrical power supply and so they have to improve the reliability of the network.One solution is to monitor the critical(heavy loaded)overhead lines.For example,with the knowledge of the thermal condition,the risk of unexpected outages can be reduced.Today several monitoring systems are available on the market.They differ in the principle and techniques of the condition evaluation.The three most interesting output variables are the line temperature,the capable transmission power and the actual sag of the investigated section.In this paper an overview of existing overhead line monitoring system and also an outline over the usage and benefit for the application will be given.Thermal monitoring is one technique to improve the reliability of the network and for increasing or optimising the capable transmission power.展开更多
钢拱桥的线形监测是桥梁健康监测系统的重要组成部分。运用三维激光扫描技术,融合随机抽样一致(random sample consensus,RANSAC)算法对传统的具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noi...钢拱桥的线形监测是桥梁健康监测系统的重要组成部分。运用三维激光扫描技术,融合随机抽样一致(random sample consensus,RANSAC)算法对传统的具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noise,DBSCAN)算法进行改进,对钢拱桥拱肋线形进行提取。三维激光点云数据具有全面性和细节体现的优势,能够完整地呈现桥梁结构的形状和变形信息,融合RANSAC的改进DBSCAN算法根据钢拱桥结构特征对聚类结果进行约束,能够很好地实现删除离散点及桥面、横撑、横联和腹杆部分的点云这一目的。根据融合RANSAC的改进DBSCAN算法提取出的点云进行关键点拟合,与人工提取结果进行对比,拱肋关键点提取误差均在毫米级,最大误差为9.2 mm,最小误差为0.1 mm,此提取方法能够更加准确有效地完成钢拱桥线形提取,使线形提取精度达到毫米级,大大降低了人力成本和时间成本,对钢拱桥的复杂结构有更好的鲁棒性,能很好地适应实际生产需求。展开更多
文摘An automatic monitoring technique of the seepage line, including the monitoring design, the automatic monitoring system and the backfill technique of the measuring probe of pore-water pressure, was used in a tailings dam, and a shallow refractive seismic method was investigated for obtaining the seepage line of those areas outside the monitoring zone. The results show that the automatic monitoring has the error within ±3% relative to piezometric tube method and improves monitoring efficiency greatly, and the shallow refractive seismic method has the error within ±10% but expands the area of monitoring. Both of them can be used for a daily measurement in monitoring the seepage line. The result of the automatic monitoring also shows that not only the design of the survey line and the backfill technique of the measuring probe of pore-water pressure are reasonable and economic but also the reliability and safety of the automatic monitoring system are better. Testing result by the shallow refractive seismic method in tailings reveals that the energy excited by hammering iron sheet-pole is strong enough and safe, and that the character of anti-jamming by the detectors with long tailcone is better.
文摘Overhead lines are the backbone of the electrical power transmission.Contrary to the distributions networks,the transmission system consists only in exceptional cases of longer cable lines.Typical exceptions are connections of cavern power plants,approaches to airports or bird sanctuaries and lines in urban centres.In the majority of cases,an overhead line is the most economic and practicable solution for the energy transmission.In tourism regions,an overhead line will be seen as impairment of nature or landscape and so the approval chain and procedure is in most countries long-winded and circumstantial.At the other hand,the energy consumption in Europe is growing and the volatility of transmitted power is also increasing during the last decade caused by the opening of the electric energy market.This opening process leads to a stopping of the enlargement of the interoperation network and to a minimisation of the maintenance of existing lines.Today the network operates more often at the limit of the equipment and the small and large-areas disturbances and blackouts are increasing.The operators of transmission lines are forced to ensure the electrical power supply and so they have to improve the reliability of the network.One solution is to monitor the critical(heavy loaded)overhead lines.For example,with the knowledge of the thermal condition,the risk of unexpected outages can be reduced.Today several monitoring systems are available on the market.They differ in the principle and techniques of the condition evaluation.The three most interesting output variables are the line temperature,the capable transmission power and the actual sag of the investigated section.In this paper an overview of existing overhead line monitoring system and also an outline over the usage and benefit for the application will be given.Thermal monitoring is one technique to improve the reliability of the network and for increasing or optimising the capable transmission power.