期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于CEEMD与TQWT组合方法的爆破振动信号精细化特征提取 被引量:10
1
作者 杨仁树 付晓强 +1 位作者 杨国梁 陈骏 《振动与冲击》 EI CSCD 北大核心 2017年第3期38-45,共8页
针对传统小波在爆破振动信号特征提取和分析方面的局限性,提出了基于CEEMD和TQWT组合的信号精细化特征提取方法。预先设定可调品质因子小波TQWT高、低品质因子参数对CEEMD分解优势分量重组信号进行分解,并引入相对权重因子θ,优化了分... 针对传统小波在爆破振动信号特征提取和分析方面的局限性,提出了基于CEEMD和TQWT组合的信号精细化特征提取方法。预先设定可调品质因子小波TQWT高、低品质因子参数对CEEMD分解优势分量重组信号进行分解,并引入相对权重因子θ,优化了分解过程,实现了爆破振动信号特征的精细化提取。分析结果表明:组合方法对爆破振动信号的分析不依赖于先验小波基的选择,分解过程实现了信号的二次滤波。通过连续小波多尺度三维谱和时频小波脊线对比,说明组合算法分解得到的最佳分析信号可真实反映振动信号的细节信息,时频分辨率更高。该组合方法抑制了杂波分量对信号特征的干扰,可精确地提取复杂环境下的爆破振动信号特征信息。 展开更多
关键词 爆破振动 总体平均经验模态分解 可调品质因子小波变换 能量分布 时频脊线
在线阅读 下载PDF
高速列车齿轮箱轴承故障诊断的自适应TQWT方法 被引量:9
2
作者 龙莹 苏燕辰 +2 位作者 高扬 李艳萍 何刘 《中国测试》 CAS 北大核心 2019年第11期108-113,共6页
齿轮箱轴承是高速列车传动系统中重要的零部件之一,其故障诊断对保障列车运行安全具有重要意义。轴承故障诊断主要依靠其故障特征的提取,因此提出基于改进谱峭度(improved spectral kurtosis,ISK)的自适应可调品质因子小波变换(TQWT)故... 齿轮箱轴承是高速列车传动系统中重要的零部件之一,其故障诊断对保障列车运行安全具有重要意义。轴承故障诊断主要依靠其故障特征的提取,因此提出基于改进谱峭度(improved spectral kurtosis,ISK)的自适应可调品质因子小波变换(TQWT)故障特征的提取方法。首先在谱峭度基础上引入包络谱熵,提出既能度量信号脉冲强度又能表征其周期性的ISK指标。文章提出的方法利用ISK在TQWT的品质因子Q与冗余因子r的取值范围内自动选取最佳Q、r参数,将信号分解成若干信号分量,并通过选取冲击特征丰富的分量信号进行合并、包络解调提取故障特征。仿真信号验证方法的可行性与有效性,将该方法运用于齿轮箱轴承故障诊断中,结果表明:该方法能挖掘原始信号中不易被发现的信息,使包络谱中故障特征丰富,能有效地诊断轴承故障。 展开更多
关键词 信号分析 故障诊断 可调品质因子小波变换 谱峭度 滚动轴承
在线阅读 下载PDF
自适应TQWT滤波器算法及其在冲击特征提取中的应用 被引量:15
3
作者 孔运 王天杨 褚福磊 《振动与冲击》 EI CSCD 北大核心 2019年第11期9-16,23,共9页
微弱故障的冲击特征提取,对于旋转机械设备平稳工况下的状态监测与诊断至关重要。针对强背景噪声下机械故障微弱冲击特征有效提取的难题,提出基于自适应可调品质因子小波变换(TQWT)滤波器的冲击特征提取算法。TQWT作为新兴的频域显式小... 微弱故障的冲击特征提取,对于旋转机械设备平稳工况下的状态监测与诊断至关重要。针对强背景噪声下机械故障微弱冲击特征有效提取的难题,提出基于自适应可调品质因子小波变换(TQWT)滤波器的冲击特征提取算法。TQWT作为新兴的频域显式小波构造理论,具有匹配特定振荡行为信号成分、可利用FFT算法快速实现的优点。所提自适应TQWT滤波器算法,主要涉及TQWT参数(品质因子Q、冗余度r以及分解层数J)的优化选择以及最优特征子带的自适应选择,不依赖于先验知识。算法根据所提出的中心频率比指标以及能量加权归一化小波熵,分别对分解层数以及品质因子和冗余度进行优化选择,构造出适合揭示冲击信号成分振荡行为的优化可调品质因子小波基函数,进而利用冲击特征指标引导含冲击特征信息的最优特征子带选择,最后利用TQWT逆变换实现信号的重构与降噪,提取周期性微弱冲击特征。仿真试验与实测轴承信号的分析结果表明,算法能够自适应选择TQWT参数并实现微弱冲击特征的有效提取。 展开更多
关键词 可调品质因子小波变换 参数选择 能量加权归一化小波熵 冲击特征指标 微弱故障特征
在线阅读 下载PDF
Oscillatory-Plus-Transient Signal Decomposition Using TQWT and MCA
4
作者 G. Ravi Shankar Reddy Rameshwar Rao 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第2期135-151,共17页
This paper describes a method for decomposing a signal into the sum of an oscillatory component and a transient component. The process uses the tunable Q-factor wavelet transform (TQWT): The oscillatory component is m... This paper describes a method for decomposing a signal into the sum of an oscillatory component and a transient component. The process uses the tunable Q-factor wavelet transform (TQWT): The oscillatory component is modeled as a signal that can be sparsely denoted by high Q-factor TQWT;similarly, the transient component is modeled as a piecewise smooth signal that can be sparsely denoted using low Q-factor TQWT. Since the low and high Q-factor TQWT has low coherence, the morphological component analysis (MCA) can effectively decompose the signal into oscillatory and transient components. The corresponding optimization problem of MCA is resolved by the split augmented Lagrangian shrinkage algorithm (SALSA). The applications of the proposed method to speech, electroencephalo-graph (EEG), and electrocardiograph (ECG) signals are included. 展开更多
关键词 Morphological COMPONENT analysis (MCA) OSCILLATORY COMPONENT split AUGMENTED LAGRANGIAN shrinkage algorithm (SALSA) transient COMPONENT tunable Q-factor wavelet transform (tqwt)
在线阅读 下载PDF
基于可调Q因子小波变换的识别左右手运动想象脑电模式研究 被引量:6
5
作者 陈万忠 王晓旭 张涛 《电子与信息学报》 EI CSCD 北大核心 2019年第3期530-536,共7页
针对识别左右手运动想象脑电图信号(EEG)模式精度和互信息不高的问题,该文采用基于可调Q因子小波变换(TQWT)算法来处理脑电信号。首先,利用TQWT对脑电图信号进行分解;随后,提取子频带信号的小波系数能量、自回归模型(AR)系数以及分形维... 针对识别左右手运动想象脑电图信号(EEG)模式精度和互信息不高的问题,该文采用基于可调Q因子小波变换(TQWT)算法来处理脑电信号。首先,利用TQWT对脑电图信号进行分解;随后,提取子频带信号的小波系数能量、自回归模型(AR)系数以及分形维数;最后,利用线性判别分析(LDA)对提取的脑电特征进行识别。采用BCI2003和BCI2005竞赛数据对所提出的算法进行验证,4名受试者的最高识别率分别为88.11%, 89.33%,77.13%和78.80%,最大互信息分别为0.95, 0.96, 0.43和0.45。实验结果表明,所提算法取得了高分类精度及互信息值,验证了其有效性。 展开更多
关键词 脑电图 运动想象 可调Q因子小波变换 线性判别分析
在线阅读 下载PDF
基于双调Q小波变换的瞬态成分提取及轴承故障诊断应用研究 被引量:10
6
作者 项巍巍 蔡改改 +2 位作者 樊薇 黄伟国 朱忠奎 《振动与冲击》 EI CSCD 北大核心 2015年第10期34-39,共6页
因轴承的剥落、裂纹等局部故障易致运行时振动信号中出现瞬态成分,而轴承故障振动信号为非平稳信号,含高、低振荡成分,传统的线性信号处理方法及基于频率的分解方法均存在一定局限性。对此,研究基于信号振荡特征而非频率特征的双调Q小... 因轴承的剥落、裂纹等局部故障易致运行时振动信号中出现瞬态成分,而轴承故障振动信号为非平稳信号,含高、低振荡成分,传统的线性信号处理方法及基于频率的分解方法均存在一定局限性。对此,研究基于信号振荡特征而非频率特征的双调Q小波变换,设定不同Q因子小波将轴承故障信号非线性分解成低、高振荡及噪声成分,轴承故障瞬态成分对应低振荡成分,提取低振荡成分即能实现轴承故障瞬态成分提取。通过轴承故障状态下瞬态成分检测表明,该方法能有效提取轴承故障瞬态成分。经与均值滤波、小波阈值及经验模态分解(EMD)等方法比较,验证该方法的优越性。 展开更多
关键词 滚动轴承 故障诊断 双调Q小波变换 振荡特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部