针对毫米波雷达数据均匀性差,数据量小,噪点多等问题,提出一种基于DBSCAN(density-based spatial clustering of applications with noise)的雷达自适应聚类算法。改进算法能够根据K近邻距离和目标反射截面自适应调整聚类半径。首先给...针对毫米波雷达数据均匀性差,数据量小,噪点多等问题,提出一种基于DBSCAN(density-based spatial clustering of applications with noise)的雷达自适应聚类算法。改进算法能够根据K近邻距离和目标反射截面自适应调整聚类半径。首先给出一种聚类半径根据K近邻距离动态调整的机制:目标第K个近邻的距离与阈值相比较,以确定阈值半径取值。再提取雷达提供的目标反射截面,基于该值计算目标假象半径作为聚类半径的补充量。实现根据目标反射截面与数据稀疏程度自适应聚类的效果。将改进算法与不同参数的DBSCAN聚类算法在真实雷达点云数据进行实验对比。相较于选取合适参数的DBSCAN算法,改进算法能够更好适应毫米波雷达点云特征,对行人目标识别准确率提高4.18%,对车辆目标识别准确率提高5.63%。展开更多
Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model ba...Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.展开更多
文摘针对毫米波雷达数据均匀性差,数据量小,噪点多等问题,提出一种基于DBSCAN(density-based spatial clustering of applications with noise)的雷达自适应聚类算法。改进算法能够根据K近邻距离和目标反射截面自适应调整聚类半径。首先给出一种聚类半径根据K近邻距离动态调整的机制:目标第K个近邻的距离与阈值相比较,以确定阈值半径取值。再提取雷达提供的目标反射截面,基于该值计算目标假象半径作为聚类半径的补充量。实现根据目标反射截面与数据稀疏程度自适应聚类的效果。将改进算法与不同参数的DBSCAN聚类算法在真实雷达点云数据进行实验对比。相较于选取合适参数的DBSCAN算法,改进算法能够更好适应毫米波雷达点云特征,对行人目标识别准确率提高4.18%,对车辆目标识别准确率提高5.63%。
基金Projects(51475254,51625503)supported by the National Natural Science Foundation of ChinaProject(MCM20150302)supported by the Joint Project of Tsinghua and China Mobile,ChinaProject supported by the joint Project of Tsinghua and Daimler Greater China Ltd.,Beijing,China
文摘Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.