期刊文献+
共找到2,355篇文章
< 1 2 118 >
每页显示 20 50 100
Spectral matching algorithm based on nonsubsampled contourlet transform and scale-invariant feature transform 被引量:4
1
作者 Dong Liang Pu Yan +2 位作者 Ming Zhu Yizheng Fan Kui Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期453-459,共7页
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq... A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy. 展开更多
关键词 point pattern matching nonsubsampled contourlet transform scale-invariant feature transform spectral algorithm.
在线阅读 下载PDF
Image matching algorithm based on SIFT using color and exposure information 被引量:9
2
作者 Yan Zhao Yuwei Zhai +1 位作者 Eric Dubois Shigang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期691-699,共9页
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera... Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT. 展开更多
关键词 scale invariant feature transform(SIFT) image matching color exposure
在线阅读 下载PDF
A fast, accurate and dense feature matching algorithm for aerial images 被引量:2
3
作者 LI Ying GONG Guanghong SUN Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1128-1139,共12页
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis... Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches. 展开更多
关键词 feature matching feature screening feature fusion aerial image three-dimensional(3D)reconstruction
在线阅读 下载PDF
Line Matching Across Views Based on Multiple View Stereo 被引量:5
4
作者 FU Kang-Ping SHEN Shu-Han HU Zhan-Yi 《自动化学报》 EI CSCD 北大核心 2014年第8期1680-1689,共10页
关键词 多视点 立体 DBSCAN算法 配基 线路 浏览 图形匹配 匹配方法
在线阅读 下载PDF
Image Feature Extraction and Matching of Augmented Solar Images in Space Weather 被引量:1
5
作者 WANG Rui BAO Lili CAI Yanxia 《空间科学学报》 CAS CSCD 北大核心 2023年第5期840-852,共13页
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed... Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms. 展开更多
关键词 Augmented reality Augmented image Image feature point extraction and matching Space weather Solar image
在线阅读 下载PDF
Feature extension and matching for mobile robot global localization 被引量:1
6
作者 Peng Wang Qibin Zhang Zonghai Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期840-846,共7页
This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions a... This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions are then built by exten- ding features to constitute the local extended map set. While the robot is moving in the environment, the local extended map of the current local environment is established and then matched with the local extended map set. Therefore, global localization in an indoor environment can be achieved by integrating the position and ori- entation matching rates. Both theoretical analysis and comparison experimental result are provided to verify the effectiveness of the proposed method for global localization. 展开更多
关键词 feature extension global localization feature match-ing mobile robot.
在线阅读 下载PDF
Individual Identification of Dairy Cows Based on Deep Feature Extrac-tion and Matching
7
作者 Shen Wei-zheng Sun Jia +4 位作者 Liang Chen Shi Wei Guo Jin-yan Zhang Zhe Zhang Yong-gen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第3期85-96,共12页
Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional n... Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional neural network had the disadvantages in prolonged training at the additions of new cows samples.Therefore,a cow individual identification framework was proposed based on deep feature extraction and matching,and the individual identification of dairy cows based on this framework could avoid repeated training.Firstly,the trained convolutional neural network model was used as the feature extractor;secondly,the feature extraction was used to extract features and stored the features into the template feature library to complete the enrollment;finally,the identifies of dairy cows were identified.Based on this framework,when new cows joined the herd,enrollment could be completed quickly.In order to evaluate the application performance of this method in closed-set and open-set individual identification of dairy cows,back images of 524 cows were collected,among which the back images of 150 cows were selected as the training data to train feature extractor.The data of the remaining 374 cows were used to generate the template data set and the data to be identified.The experiment results showed that in the closed-set individual identification of dairy cows,the highest identification accuracy of top-1 was 99.73%,the highest identification accuracy from top-2 to top-5 was 100%,and the identification time of a single cow was 0.601 s,this method was verified to be effective.In the open-set individual identification of dairy cows,the recall was 90.38%,and the accuracy was 89.46%.When false accept rate(FAR)=0.05,true accept rate(TAR)=84.07%,this method was verified that the application had certain research value in open-set individual identification of dairy cows,which provided a certain idea for the application of individual identification in the field of intelligent animal husbandry. 展开更多
关键词 cow individual identification convolutional neural networks deep feature extraction feature matching
在线阅读 下载PDF
铁路工程绿色设计目标分解及实现途径分析 被引量:1
8
作者 杨信丰 李海军 +2 位作者 县勇 巨玉祥 贺锦 《铁道科学与工程学报》 北大核心 2025年第1期368-380,共13页
铁路工程绿色设计,是实现其绿色发展的重要手段。目前,铁路工程各专业大多从某个工程应用角度出发,主要集中于绿化和污染防治案例研究,很少从系统角度出发研究铁路工程绿色设计。铁路工程要实现某一绿色指标,须从系统角度,各专业协同设... 铁路工程绿色设计,是实现其绿色发展的重要手段。目前,铁路工程各专业大多从某个工程应用角度出发,主要集中于绿化和污染防治案例研究,很少从系统角度出发研究铁路工程绿色设计。铁路工程要实现某一绿色指标,须从系统角度,各专业协同设计。因此,需要对铁路工程绿色设计目标进行特征分析,明确铁路工程绿色设计目标实现的主要途径。为此,首先从铁路绿色设计概念出发,采用目标层次分解、问卷调查等方法,对铁路工程绿色设计的目标进行逐层分解,将资源节约划分为土地节约、能源节约、材料节约及水资源节约等,将环境保护分解为生态环境保护、水土环境保护、大气环境保护、人文景观提升及其他环境保护等方面,并进一步细化第3层次的属性特征,明晰了铁路工程绿色设计的目标特征及内涵。通过对铁路工程各专业的设计流程进行分析,依据相关设计规范和标准,梳理各专业在不同设计阶段的主要绿色设计要点。基于jieba分词工具将绿色设计目标特征及各专业的绿色设计要点划分为多个词向量,采用主观赋权的方法确定特征分词的权重,并定义语义信息匹配度,将铁路工程绿色设计目标与铁路工程设计的各专业进行匹配,明确铁路工程各绿色设计目标得以实现的主要途径,为铁路工程各专业系统实现总体绿色设计提供依据。 展开更多
关键词 绿色设计 铁路工程 目标分解 实现途径 设计要点 特征匹配
在线阅读 下载PDF
基于双目立体视觉的多分辨率图像匹配方法研究
9
作者 刘华春 吴广文 闫静莉 《现代电子技术》 北大核心 2025年第1期29-32,共4页
在双目立体视觉系统中,面对复杂场景时噪声会损害图像特征,增加提取难度,导致匹配精度和鲁棒性下降。因此,文中提出基于双目立体视觉的多分辨率图像匹配方法,旨在从不同尺度图像中有效获取信息并实现高精度匹配。该方法利用双目立体视... 在双目立体视觉系统中,面对复杂场景时噪声会损害图像特征,增加提取难度,导致匹配精度和鲁棒性下降。因此,文中提出基于双目立体视觉的多分辨率图像匹配方法,旨在从不同尺度图像中有效获取信息并实现高精度匹配。该方法利用双目立体视觉模型的双目旋转相机扫描目标并进行成像,根据内、外空间标定提升双目旋转相机的位置精度,保证目标的多分辨率成像效果;将其输入金字塔立体匹配网络中,通过网络中的类金字塔多空洞卷积操作提取双目图像特征,在此基础上,基于可变卷积增强其纹理特征细节;结合细粒度特征和互注意力机制完成双目图像匹配。测试结果显示,空间标定后,左、右两个相机的成像误差最小值分别为0.6 Pixel和0.4 Pixel;匹配点坐标偏差均值和坐标偏差方差值分别低于0.012和0.011,匹配效果良好。 展开更多
关键词 双目立体视觉 多分辨率 图像匹配 空间标定 双目旋转相机 特征提取 特征增强 细粒度
在线阅读 下载PDF
煤矿井下锚网特征掘进机视觉定位方法
10
作者 张旭辉 迟云凯 +6 位作者 杜昱阳 姜俊英 杨文娟 赵友军 万继成 王彦群 田琛辉 《煤田地质与勘探》 北大核心 2025年第6期259-270,共12页
【背景】煤矿井下掘进装备精确定位是实现综掘工作面自动化、智能化导控的重要基础。但因井下巷道狭长封闭、光照不足、纹理稀疏等因素,传统的视觉定位方法应用受限,基于此提出一种基于锚网特征的煤矿井下掘进机视觉定位方法。【方法】... 【背景】煤矿井下掘进装备精确定位是实现综掘工作面自动化、智能化导控的重要基础。但因井下巷道狭长封闭、光照不足、纹理稀疏等因素,传统的视觉定位方法应用受限,基于此提出一种基于锚网特征的煤矿井下掘进机视觉定位方法。【方法】采用三分支深度可分离卷积的图像增强网络,分别估计图像的反射、光照和噪声,在调整光照分量的同时抑制噪声的影响,得到了光照均匀、纹理清晰的图像,提升了视觉定位系统在复杂光照条件下的适应性;设计了适用于锚网线特征提取与匹配的方法,通过自适应阈值的EDLines(edge drawing lines)增强了对锚网线特征的提取能力,并利用结构相似度(structure similarity index measure,SSIM)提高了线特征的匹配的准确性;构建了最小化线特征重投影误差的位姿解算模型,结合位姿图优化,实现了掘进机的精确定位。搭建实验平台,对图像增强、线特征处理以及定位性能分别设计实验进行定量分析。【结果和结论】TSCRNET图像增强方法相较于MSRCR和Zero-DCE取得了更高的PSNR值与SSIM值;线特征处理方法相对于传统算法提取特征数量与匹配精度显著提高,为后续定位过程奠定了基础;定位实验部分,在EuRoC数据集以及实际巷道场景中将TSCR-NET算法与其它基于线特征的视觉定位方法进行对比,该算法在EuRoC数据集的9个数据序列中表现优于PL-VINS算法,在60 m范围内的巷道锚网环境中对机身进行连续跟踪,观测到该视觉定位方法最大误差为163 mm,与PL-VINS的最大误差213 mm相比,降低了23.5%,均方根误差由0.531降低至0.426,降低了19.8%,可见TSCR-NET算法具有更高的精度与稳定性,对掘进机在井下巷道锚网环境中的长距离位姿检测具有重要借鉴作用。 展开更多
关键词 掘进机 视觉定位 图像增强 线特征提取与匹配 运动估计 锚网特征 煤矿
在线阅读 下载PDF
基于改进SURF的飞行训练科目自动识别
11
作者 张娅岚 刘芳 +1 位作者 刘伟杰 魏永超 《电讯技术》 北大核心 2025年第10期1579-1586,共8页
现有飞行训练科目识别方法在复杂机动动作识别中存在滞后性,忽视了现代数字技术的应用与最新规章制度的更新,其核心挑战在于如何降低匹配误差率并提升运算速度。针对上述问题,设计并构建了一种混合自动识别框架(SURF-FLANN-RANSAC Hybri... 现有飞行训练科目识别方法在复杂机动动作识别中存在滞后性,忽视了现代数字技术的应用与最新规章制度的更新,其核心挑战在于如何降低匹配误差率并提升运算速度。针对上述问题,设计并构建了一种混合自动识别框架(SURF-FLANN-RANSAC Hybrid Algorithmic Framework,SFR)。首先,采用改进的加速稳健特征(Speeded Up Robust Features,SURF)算法实现驾驶舱场景内的图像特征提取与匹配。其次,引入近似最近邻快速搜索库(Approximate Nearest Neighbors,FLANN)匹配器以加速特征匹配过程,提升特征匹配效率与精度。然后,基于随机采样一致性(Random Sample Consensus,RANSAC)算法消除误匹配问题,增强算法整体鲁棒性。在大坡度盘旋、懒“8”、急上升转弯3个典型飞行训练场景自建数据集上的实验结果表明,该算法的识别精度分别为94.58%、62.95%、86.72%,与表现次佳的算法相比,分别提升了1%、20%、4%,且处理速度上实现了显著改善,为飞行训练的智能化管理提供了强有力的技术支持。 展开更多
关键词 飞行训练动作识别 图像特征提取 特征点匹配 加速稳健特征(SURF)
在线阅读 下载PDF
基于显著性特征的多视角动作图像识别研究
12
作者 惠向晖 孙艳红 沈小乐 《现代电子技术》 北大核心 2025年第13期62-65,共4页
文中基于显著性特征的多视角动作图像识别方法,自动学习并提取出运动员动作的关键特征,有助于教练为运动员制定更科学、更个性化的训练计划。将人体骨架序列对齐到统一的时空坐标系中,计算距离图和角度图以捕捉骨架的空间特征,生成人体... 文中基于显著性特征的多视角动作图像识别方法,自动学习并提取出运动员动作的关键特征,有助于教练为运动员制定更科学、更个性化的训练计划。将人体骨架序列对齐到统一的时空坐标系中,计算距离图和角度图以捕捉骨架的空间特征,生成人体运动特征图;构建CNN+CA模型,将处理后的多视角动作视频帧生成感兴趣区域(ROI)拼接图,再将其输入到CNN中,提取多视角融合特征,并在CA模块中突出那些对于动作图像识别最为关键的区域;通过序列匹配算法将多视角动作识别问题转化为预测标签序列的匹配问题,为待识别动作图像分配动作类别标签,实现准确的多视角动作图像识别。实验结果表明:该方法不仅能够有效处理来自不同视角的动作图像,还能够准确识别出篮球运动员的多种动作。 展开更多
关键词 显著性特征 多视角动作图像 运动特征图 ROI拼接图 CNN CA模块 LSTM 序列匹配算法
在线阅读 下载PDF
改进R-LoFTR++的智能巡检特征匹配算法
13
作者 舒军 王江舸 +2 位作者 杨莉 舒心怡 《重庆理工大学学报(自然科学)》 北大核心 2025年第2期86-96,共11页
在应用增强现实技术的变电站巡检工作中,背景纹理复杂难以提取特征点,大视角变化情况下匹配正确率低,针对以上问题提出改进特征匹配算法R-LoFTR++。引入高斯滤波进行预处理,有效减少图像噪声并平滑部分纹理,降低了匹配的复杂度。设计了... 在应用增强现实技术的变电站巡检工作中,背景纹理复杂难以提取特征点,大视角变化情况下匹配正确率低,针对以上问题提出改进特征匹配算法R-LoFTR++。引入高斯滤波进行预处理,有效减少图像噪声并平滑部分纹理,降低了匹配的复杂度。设计了特征方向描述子模块,增强了网络对图像关键点的方向敏感度,提高了大视角差图像间的匹配率。集成MAGSAC++算法,优化匹配过程、剔除误匹配点,提升了匹配的正确率。实验结果表明,R-LoFTR++算法在变电站真实数据集上的匹配效果都优于参与对比的其他特征匹配算法。在MegaDepth相同特定场景子集的实验中,R-LoFTR++在户外姿态评估实验中AUC指标相比于原网络提升了约0.92%~1.63%。 展开更多
关键词 特征匹配 LoFTR算法 增强现实技术 电气检测
在线阅读 下载PDF
局部密度差异引导的图像特征匹配算法
14
作者 肖剑 武亮亮 +1 位作者 何昕泽 胡欣 《哈尔滨工业大学学报》 北大核心 2025年第8期88-95,共8页
为解决预定义参数化模型的特征匹配方法通用性较低且鲁棒性较差的问题,根据正确匹配和误匹配的空间分布具有显著差异的现象,提出一种局部密度差异引导的特征匹配(RFM-LoDD)算法。首先,将假定特征匹配转换为能够表征特征匹配性质的空间... 为解决预定义参数化模型的特征匹配方法通用性较低且鲁棒性较差的问题,根据正确匹配和误匹配的空间分布具有显著差异的现象,提出一种局部密度差异引导的特征匹配(RFM-LoDD)算法。首先,将假定特征匹配转换为能够表征特征匹配性质的空间样本点,并引入概率距离计算样本点的局部密度。其次,在随机选取的40幅涉及不同变换模型的图像对上测试算法的最优参数设置,确定了具有全局最优的密度阈值和其他参数。最后,将样本点的局部密度与密度阈值进行比较,当样本点的局部密度大于密度阈值,则认为该样本点代表的假定匹配为正确匹配,否则,就认为其代表的假定匹配为误匹配。在代表图像对和公开数据集上进行的实验表明,RFM-LoDD算法在各种匹配场景下都能够保持良好的鲁棒性,特别是在内点率较低的Retina数据集和AdelaideRMF数据集上相比于先进的算法均取得了领先的F分数。此外,RFM-LoDD算法具有准线性的时间复杂度,在4个公开数据集上的平均运行时间约为40 ms,时间成本相比于经典的随机抽样一致性(RANSAC)算法降低了两个数量级。 展开更多
关键词 特征匹配 局部密度 误匹配剔除 图像配准 变换模型
在线阅读 下载PDF
基于云计算的多类型大规模激光图像快速识别研究
15
作者 李洋 张阳 陶锐 《激光杂志》 北大核心 2025年第2期149-153,共5页
大规模激光图像是指数量庞大、信息量丰富的激光扫描图像数据。这类图像在地理信息获取、城市规划、自动驾驶等领域的应用日益广泛,通常包含丰富的空间信息和细节特征,因此,存在处理复杂度高的问题,云计算作为一种新兴的计算模式,具有... 大规模激光图像是指数量庞大、信息量丰富的激光扫描图像数据。这类图像在地理信息获取、城市规划、自动驾驶等领域的应用日益广泛,通常包含丰富的空间信息和细节特征,因此,存在处理复杂度高的问题,云计算作为一种新兴的计算模式,具有强大的计算能力和灵活的资源配置优势,研究基于云计算的多类型大规模激光图像快速识别方法。通过非线性匹配方式处理激光图像,确定激光图像中目标点位姿变化矩阵;将处理后的激光图像,以机器算法作特征筛选,划分不同类型激光图像中的关键特征;采用云计算关联方法,构建快速识别模型,通过模型内目标函数,实现多类型大规模激光图像快速识别。实验结果表明:以两组不同类型的连续帧激光图像作为测试样本,所研究方法可以实现设计方案下的快速识别,具有应用价值。 展开更多
关键词 云计算 多类型 大规模 激光图像 快速识别 匹配方式 关键特征
在线阅读 下载PDF
基于边缘特征和PCNN的红外与可见光图像配准
16
作者 李玮琳 曾琪峰 李颖 《激光杂志》 北大核心 2025年第5期124-129,共6页
由于不同的成像原理、光源条件、目标物体的属性以及环境因素的影响,不同场景下的红外与可见光图像在内容、结构、亮度、对比度等方面存在显著差异,为提高红外和可见光图像的特征配准精度,提出基于边缘特征和脉冲耦合神经网络(Pulse-Cou... 由于不同的成像原理、光源条件、目标物体的属性以及环境因素的影响,不同场景下的红外与可见光图像在内容、结构、亮度、对比度等方面存在显著差异,为提高红外和可见光图像的特征配准精度,提出基于边缘特征和脉冲耦合神经网络(Pulse-Coupled Neural Network,PCNN)的配准方法。在预处理阶段去除红外和可见光待配准图像中存在的干扰信息,抵抗图像间的亮度差异、边缘模糊、纹理变化等因素,提取图像边缘特征,得到其中包含的轮廓结构;通过脉冲传播特性实现对边缘特征点的匹配,增强图像配准过程中的动态行为和感知能力;再寻找特征点间的相似曲线,匹配边缘形状信息的同时与周围的灰度分布对应,令相同组织信息可自然过渡,完成红外与可见光图像间的精确配准。实验证明:所提方法准确提取和匹配特征点,配准精度高,稳定性好,可适应性强,在30 dB噪声强度下,归一化互信息保持在0.87以上。 展开更多
关键词 特征匹配 像素值 迭代空间 轮廓信息 全局配准
在线阅读 下载PDF
LIO-SAM改进:自适应降采样与特征筛选优化
17
作者 曾宪阳 于浩 +1 位作者 梁远生 杨红莉 《仪器仪表学报》 北大核心 2025年第7期288-296,共9页
针对激光雷达SLAM算法中的LIO-SAM算法在复杂环境中高度定位精度不足的问题,围绕特征点提取与后端点云匹配两个关键环节提出改进策略。在后端匹配方面,鉴于其存在的帧间误差波动大、鲁棒性差的情况,创新性地提出一种基于前置匹配的自适... 针对激光雷达SLAM算法中的LIO-SAM算法在复杂环境中高度定位精度不足的问题,围绕特征点提取与后端点云匹配两个关键环节提出改进策略。在后端匹配方面,鉴于其存在的帧间误差波动大、鲁棒性差的情况,创新性地提出一种基于前置匹配的自适应降采样方法。该方法借助预匹配操作,有效提升初始匹配精度,并依据点云局部密度,动态调整体素滤波分辨率,从而在保证匹配精度的同时显著提升计算效率。在前端特征点提取环节,针对LIO-SAM中曲率计算冗余、排序开销大以及近处点云特征提取率低问题,提出一种结合早期截断(Early Cutoff)与多尺度体素空间协方差分析的双阶段特征筛选机制。该机制主要针对近处点云,首先通过局部几何变化阈值快速剔除冗余点,随后在多尺度体素网格中进行协方差特征分析,从中筛选出空间分布均衡、几何结构稳定的代表性特征点,远处点云采用原算法提取。在公开数据集KITTI中选取表现稳定的序列07进行对比实验证明,优化后的算法在X、Y轴精度少有提升情况下,Z轴的平均绝对误差下降了26.44%,RMSE下降了24.43%,标准差下降了30.24%,且已在实车平台上完成部署验证,具备良好的鲁棒性与工程适用性。 展开更多
关键词 特征点 自适应降采样 多尺度体素空间 前置匹配
在线阅读 下载PDF
基于异常检测的图像特征匹配算法
18
作者 肖剑 武亮亮 +1 位作者 何昕泽 胡欣 《浙江大学学报(工学版)》 北大核心 2025年第6期1140-1147,共8页
基于预定义参数化模型的特征匹配方法通用性较低,为此提出基于异常检测的特征匹配算法(RFM-AD).根据假定特征匹配构建异常检测样本,将特征匹配问题转换为异常样本点检测问题,引入局部异常因子(LOF)算法作为异常检测的基础.针对LOF算法... 基于预定义参数化模型的特征匹配方法通用性较低,为此提出基于异常检测的特征匹配算法(RFM-AD).根据假定特征匹配构建异常检测样本,将特征匹配问题转换为异常样本点检测问题,引入局部异常因子(LOF)算法作为异常检测的基础.针对LOF算法不能有效检测低密度样本的缺陷,引入并改进基于连通性的异常检测方法(COF),并基于引导匹配策略对COF算法和LOF算法进行融合.在随机选取的30幅涉及不同变换模型和噪声干扰的图像对上测试算法的参数设置,确定全局最优的关键参数.在4个公开数据集上进行实验,结果表明,本研究算法在面对大量异常值时具有良好的鲁棒性和匹配性能;在保证较高匹配准确率的情况下,本研究算法相比于RANSAC、LPM、RFM-SCAN等先进算法取得了较高的召回率;在内点率最低的Retina数据集上,本研究算法的F分数较高. 展开更多
关键词 特征匹配 异常检测 局部异常因子 误匹配剔除 图像配准
在线阅读 下载PDF
基于深度学习特征匹配的无人机景象匹配导航
19
作者 陈明强 张勇 +1 位作者 刘俊杰 周子杨 《电光与控制》 北大核心 2025年第5期60-66,共7页
无人机景象匹配导航作为一种无源导航而被广泛研究。其中,特征点提取与匹配是无人机景象匹配导航的重要组成部分,传统特征点提取与匹配算法没有将结果进行全局负反馈,导致在异源图像特征匹配中精度较低。针对传统算法所存在的问题,提出... 无人机景象匹配导航作为一种无源导航而被广泛研究。其中,特征点提取与匹配是无人机景象匹配导航的重要组成部分,传统特征点提取与匹配算法没有将结果进行全局负反馈,导致在异源图像特征匹配中精度较低。针对传统算法所存在的问题,提出了一种基于深度神经网络特征匹配的无人机景象匹配导航算法,该算法通过引入并改进深度神经网络SuperPoint和LightGlue算法,进行特征点提取以及特征匹配,提升了特征匹配的准确度与稳定性。针对异源图像像素差别大的问题,在模型中引入图像灰度转化算法,有效降低了像素差别对匹配结果的影响。最后进行实验仿真分析,结果表明,深度学习算法相比传统ORB算法能够更有效地解决无人机在复杂环境中的特征匹配问题。 展开更多
关键词 无人机 景象匹配导航 特征匹配 SuperPoint LightGlue
在线阅读 下载PDF
小样本相似性匹配特征增强的密集目标计数网络
20
作者 谢斌红 高婉银 +2 位作者 陆望东 张英俊 张睿 《计算机应用》 北大核心 2025年第2期403-410,共8页
为了解决训练数据有限且类别多的问题,引入小样本学习方法。针对现有密集目标计数方法中存在的密集物体边界不清晰、空间不一致性和模型泛化能力弱等问题,提出一种小样本相似性匹配特征增强密集目标计数网络(SMFENet)。首先,通过特征提... 为了解决训练数据有限且类别多的问题,引入小样本学习方法。针对现有密集目标计数方法中存在的密集物体边界不清晰、空间不一致性和模型泛化能力弱等问题,提出一种小样本相似性匹配特征增强密集目标计数网络(SMFENet)。首先,通过特征提取模块提取图像特征,并使用ROI Align方法对齐样例特征;其次,设计相似性比较特征增强模块(SCFEM)计算样例特征和图像特征的相似度,得到相似度图,并将该图作为加权系数用样例特征自适应地增强图像特征,使最终得到的增强特征更关注与样例特征相似的区域;同时,采用内部特征增强、内部尺度增强以及信息合并等方法解决密集物体边界不清晰和空间不一致性问题;最后,利用密度预测模块生成密度图。此外,采用内容感知标注法生成高质量Ground-Truth密度图,以进一步提升模型的准确性。测试时,通过自适应损失调整网络使网络泛化到新类别上。在FSC-147数据集和CARPK数据集上的实验结果表明,与现有的小样本目标计数方法相比,所提模型的平均绝对误差(MAE)降低到13.82,均方根误差(RMSE)降低到45.91;与特定类别计数方法相比,所提模型的MAE降低到4.16,RMSE降低到5.91。以上充分证明SMFENet模型在提高计数的准确性和鲁棒性等方面能取得较好的效果,展示了该模型的实际应用价值。 展开更多
关键词 密集目标计数 小样本学习 密度预测 相似性匹配特征增强
在线阅读 下载PDF
上一页 1 2 118 下一页 到第
使用帮助 返回顶部