针对数据存储中心硬盘故障数据稀少造成的故障预测效果不佳的问题,面向自我检测分析与报告技术(self-monitoring analysis and reporting technology,SMART)数据信息的时序特征,提出一种通过数据增强解决不平衡问题的硬盘故障预测算法...针对数据存储中心硬盘故障数据稀少造成的故障预测效果不佳的问题,面向自我检测分析与报告技术(self-monitoring analysis and reporting technology,SMART)数据信息的时序特征,提出一种通过数据增强解决不平衡问题的硬盘故障预测算法。该算法利用长短期记忆网络改进传统的生成对抗网络,生成包含故障恶化趋势信息的序列段数据,解决了数据集不平衡问题。同时,为进一步提高预测性能,预测模型融合了时序注意力机制和特征注意力机制,挖掘不同SMART特征和时间步对硬盘故障恶化过程的敏感程度。此外,在特征选择阶段结合了多种典型特征选择算法来选取关键特征。在真实硬盘数据集上进行了实验验证,结果表明,所提算法的准确率、召回率和F 1值均有较大提升。展开更多