期刊文献+
共找到338篇文章
< 1 2 17 >
每页显示 20 50 100
作物农艺性状与形态结构表型智能识别技术综述 被引量:6
1
作者 张建华 姚琼 +3 位作者 周国民 吴雯迪 修晓杰 王健 智慧农业(中英文) CSCD 2024年第2期14-27,共14页
[目的/意义]作物农艺性状与形态结构表型智能识别是作物智慧育种的主要内容,是研究“基因型—环境型—表型”相互作用关系的基础,对现代作物育种具有重要意义。[进展]大规模、高通量作物表型获取设备是作物表型获取、分析、测量、识别... [目的/意义]作物农艺性状与形态结构表型智能识别是作物智慧育种的主要内容,是研究“基因型—环境型—表型”相互作用关系的基础,对现代作物育种具有重要意义。[进展]大规模、高通量作物表型获取设备是作物表型获取、分析、测量、识别等的基础和重要手段。本文介绍了高通量作物表型主流平台和感知成像设备的功能、性能以及应用场景。分析了作物株高获取、作物器官检测与技术等农艺性状智能识别和作物株型识别、作物形态信息测量以及作物三维重建等形态结构智能识别技术的研究进展及挑战。[结论/展望]从研制新型低成本田间智能作物表型获取与分析装备、提升作物表型获取田间环境的标准化与一致性水平、强化田间作物表型智能识别模型的通用性,研究多视角、多模态、多点连续分析与时空特征融合的作物表型识别方法,以及提高模型解释性等方面,展望了作物表型技术主要发展方向。 展开更多
关键词 作物智能感知 表型识别 器官检测与技术 深度学习 三维重建 形态测量 大模型
在线阅读 下载PDF
柠檬汁还原法制备AgNPs用于果蔬农药残留的SERS快速检测 被引量:5
2
作者 董闪闪 张凤秋 +6 位作者 夏琦 李佳林 刘超 柳少伟 陈翔宇 王儒敬 黄青 智慧农业(中英文) CSCD 2024年第1期101-110,共10页
[目的/意义]为满足目前市场上对农产品农药残留的快速灵敏检测需求,报道一种基于柠檬汁还原制备银纳米粒子(AgNPs)的方法。[方法]首先将新鲜柠檬汁经滤纸过滤,稀释成2%的柠檬汁水溶液,再配制一定浓度的AgNO3溶液、50 mM的NaOH溶液,放置... [目的/意义]为满足目前市场上对农产品农药残留的快速灵敏检测需求,报道一种基于柠檬汁还原制备银纳米粒子(AgNPs)的方法。[方法]首先将新鲜柠檬汁经滤纸过滤,稀释成2%的柠檬汁水溶液,再配制一定浓度的AgNO3溶液、50 mM的NaOH溶液,放置室温保存。然后在室温下,将10 mL的ddH2O、2mL的NaOH、2mL的2%柠檬汁和5 mL的AgNO3溶液混合,待溶液颜色变为澄清的黄色时,溶液离心即可获得AgNPs。[结果和讨论]该方法制备的AgNPs,其颗粒形貌大小基本均一,约为20 nm,具有很好的表面增强拉曼散射(Surface Enhancement of Raman Scattering,SERS)增强效应,即良好的SERS信号稳定性,较强的SERS增强性能。该胶体中AgNPs分散较均匀,并且具有较长时间储存的稳定性,因此可用于微量农残检测。柠檬汁中主要还原成分抗坏血酸、葡萄糖和果糖,其含量分别为395.76μg/mL、5.95 mg/mL和5.90 mg/mL。将柠檬汁还原法制备的AgNPs用于果蔬表面农残检测,对于百草枯、多菌灵的检出限分别最低至3.90 ng/kg及0.22μg/kg。[结论]这项工作为果蔬农残快检提供了一种绿色、便捷的SERS材料制备方法,为实现农产品农药残留的快速、灵敏检测提供一种新的途径。 展开更多
关键词 表面增强拉曼散射/光谱(SERS) 银纳米粒子(AgNPs) 农药残留 果蔬 光谱检测
在线阅读 下载PDF
用于土壤中氮钾含量快速测定的非接触电导微流控芯片 被引量:5
3
作者 洪炎 王乐 +5 位作者 王儒敬 苏静明 李浩 张家宝 郭红燕 陈翔宇 智慧农业(中英文) CSCD 2024年第1期18-27,共10页
[目的/意义]土壤中氮、钾元素在作物生长和农业生产过程中具有关键作用。快速定量检测土壤中氮、钾含量对指导精确施肥具有重要意义。因此,建立一种快速可靠的土壤氮、钾含量检测方法十分必要。[方法]本研究建立一种基于聚二甲基硅氧烷(... [目的/意义]土壤中氮、钾元素在作物生长和农业生产过程中具有关键作用。快速定量检测土壤中氮、钾含量对指导精确施肥具有重要意义。因此,建立一种快速可靠的土壤氮、钾含量检测方法十分必要。[方法]本研究建立一种基于聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)微流控芯片电泳和电容耦合非接触电导检测(Capacitively Coupled Contactless Conductivity Detection,C4D)方法,快速定量检测土壤中氮、钾养分离子。通过微流控电泳芯片实现对土壤中多种离子快速分离,利用C4D进行电导率变化的精准测量。基于检测器工作频率输出响应特性,激励电压响应特性和电泳电压,确定最佳分离和检测性能。[结果和讨论]该方法对钾离子(K+)、铵根离子(NH4+)和硝酸根离子(NO_(3)^(-))标准溶液的检测限(S/N=3)分别为0.5、0.1和0.4 mg/L。K^(+)、NH_(4)^(+)和NO_(3)^(-)在0.5~40.0 mg/L范围内具有良好的线性关系,线性相关系数(R2)分别为0.994、0.997和0.990,表明该方法可以对土壤中氮、钾养分离子进行定量分析。同时,采用峰高、峰面积和出峰时间作为评价指标进行可重复性实验,其相对标准偏差(Relative Standard Deviation,RSD)均小于4.4%,说明该方法具有良好的重复性。此外,对土壤样品进行测试,K^(+)和NH_(4)^(+)可实现完全分离以及同步检测,其检测效率明显提高。通过标准加入法进行回收率实验,回收率保持在81.74%~127.76%。[结论]本研究为土壤氮钾养分离子的快速检测提供了一种简便、高效的方法。 展开更多
关键词 非接触电导检测 微流控芯片 土壤养分 聚二甲基硅氧烷
在线阅读 下载PDF
肉牛生理指标智能监测技术研究进展与展望 被引量:5
4
作者 张帆 周梦婷 +4 位作者 熊本海 杨振刚 刘民泽 冯文晓 唐湘方 智慧农业(中英文) CSCD 2024年第4期1-17,共17页
[目的/意义]随着自动化、数智化技术的快速发展及其相关技术在肉牛养殖上的逐步推广利用,肉牛智能化养殖技术研究也取得了一定进步。肉牛的生理指标如运动量、体温、心率、呼吸频率,以及反刍量等变化反映了肉牛的健康或亚健康状态。基... [目的/意义]随着自动化、数智化技术的快速发展及其相关技术在肉牛养殖上的逐步推广利用,肉牛智能化养殖技术研究也取得了一定进步。肉牛的生理指标如运动量、体温、心率、呼吸频率,以及反刍量等变化反映了肉牛的健康或亚健康状态。基于多种传感器采集到的数据以及机器学习、数据挖掘及模型化分析等技术的利用,肉牛的生理指标可由智能感知装备尤其接触式设备自动获取并用于发情、产犊、健康和应激的监测。[进展]针对肉牛养殖过程生理指标的智能监测技术及其利用价值进行了系统分析,分析了生理指标监测技术在实际生产中的应用现状,总结了肉牛生理指标监测的难点和挑战,并提出了未来发展方向。[结论/展望]肉牛生理指标的智能监测与利用既提高数据采集的时效性和准确性,有利于提高一线人员工作效率,促进肉牛养殖的智能化水平及健康养殖水平。结合当前中国肉牛实际饲养现状和肉牛生理指标智能监测传感器的研究现状,未来需降低接触类相关设备能耗、提高使用寿命;提高各监测数据的相互融合深度分析,提高监测准确率;加强非接触、高精度、自动化的数据采集分析技术研发,减少人工佩戴设备的工作量和设备使用成本。 展开更多
关键词 肉牛生理指标 人工智能 智能监测 传感器 数据融合
在线阅读 下载PDF
MSH-YOLOv8:融合尺度重建的蘑菇小目标检测方法 被引量:3
5
作者 叶大鹏 景均 +3 位作者 张之得 李辉煌 吴昊宇 谢立敏 智慧农业(中英文) CSCD 2024年第5期139-152,共14页
[目的/意义]为了解决图像尺寸变化和目标尺度变换共存对小目标检测精度的影响问题,本研究提出了一种新的检测模型:Multi-Strategy Handling YOLOv8(MSH-YOLOv8)。[方法]该模型在YOLOv8的基础上增加一个检测头,以提高小尺度目标敏感度;引... [目的/意义]为了解决图像尺寸变化和目标尺度变换共存对小目标检测精度的影响问题,本研究提出了一种新的检测模型:Multi-Strategy Handling YOLOv8(MSH-YOLOv8)。[方法]该模型在YOLOv8的基础上增加一个检测头,以提高小尺度目标敏感度;引入Swin Transformer的检测结构到头部网络,以减少计算冗余;引入包含可变形卷积的C2f_Deformable Convolutionv4(C2f_DCNv4)结构和Swin Transformer编码器结构重构YOLOv8主干网络,优化并增强其特征传递和提取能力,提高小目标敏感度;采用基于规范化的注意力模块(Normalizationbased Attention Module,NAM)优化网络检测速度和准确性;用Wise-Intersection over Union Loss(WIoU)代替原损失函数,以提高训练效果和收敛速度;在后处理阶段应用分辨率动态训练、多尺度测试、软非极大值抑制算法(Soft-Non-Maximum Suppression,Soft-NMS)、加权边界框融合算法(Weighted Boxes Fusion,WBF)等方法,提高尺度变化下小目标检测效果。以蘑菇为研究对象,在开放数据集Fungi上开展实验。[结果和讨论]MSH-YOLOv8的平均正确率(Average Precision50,AP50)和AP@50-95分别达到了98.49%和75.29%,其中小目标检测指标值APs达39.73%。相较于主流模型YOLOv8,三项指标分别提高了2.34%,4.06%和8.55%;相较于优秀模型Transformer Prediction Heads-YOLOv5(TPH-YOLOv5),三项指标分别提高了2.14%,2.76%和6.89%。[结论]本研究提出的MSH-YOLOv8改进方法可在图像尺寸变化与目标尺度变化条件下有效提高小目标的检测效果。 展开更多
关键词 图像尺寸 小目标检测 特征提取 多尺度检测 模型集成
在线阅读 下载PDF
基于多模态图像信息及改进实例分割网络的肉牛体尺自动测量方法 被引量:3
6
作者 翁智 范琦 郑志强 智慧农业(中英文) CSCD 2024年第4期64-75,共12页
[目的/意义]牛的体尺参数是反映牛身体发育状况的关键指标,也是牛选育过程的关键因素。为解决规模化肉牛牧场复杂环境对肉牛体尺的测量需求,设计了一种图像采集装置以及体尺自动测量算法。[方法]首先搭建肉牛行走通道,当肉牛通过通道后... [目的/意义]牛的体尺参数是反映牛身体发育状况的关键指标,也是牛选育过程的关键因素。为解决规模化肉牛牧场复杂环境对肉牛体尺的测量需求,设计了一种图像采集装置以及体尺自动测量算法。[方法]首先搭建肉牛行走通道,当肉牛通过通道后进入限制装置,用英特尔双目深度相机D455对牛只右侧图像进行RGB与深度图的采集。其次,为避免复杂环境背景的影响,提出一种改进后的实例分割网络Mask2former来对牛只二维图进行前景轮廓提取,对轮廓进行区间划分,利用计算曲率分析方法找到所需体尺测点。然后,将原始深度图转换为点云数据,对点云进行点云滤波、分割和深度图牛只区域的空值填充,以保留牛体区域的点云完整,从而找到所需测点并返回到二维数据中。最后,将二维像素点投影到三维点云中,利用相机参数计算出投影点的世界坐标,从而进行体尺的自动化计算,最终提取肉牛体高、十字部高、体斜长和管围4种体尺参数。[结果与讨论]改进的实例分割网络与Mask R-CNN、PointRend、Queryinst等模型相比具有更好的分割结果。采用本研究测得的这4种体尺平均相对误差分别为4.32%、3.71%、5.58%和6.25%。[结论]本研究开发的肉牛图像采集装置及相应的图像处理方法可以满足该牧场对肉牛体尺无接触自动测量误差小于8%的精度要求,为非接触式肉牛体尺自动化测量提供了理论与实践指导。 展开更多
关键词 肉牛体尺测量 深度学习 点云分割 实例分割 注意力机制 Mask2former
在线阅读 下载PDF
农业传感器:研究进展、挑战与展望 被引量:9
7
作者 王儒敬 智慧农业(中英文) CSCD 2024年第1期1-17,共17页
[目的/意义]农业传感器是数字农业、信息农业、智慧农业等现代农业发展模式的源头技术,也是推动农业科技迭代升级和农业生产方式变革的重要驱动力。农业传感器应用环境(水、气及土壤)和监测对象(动植物)多样复杂、规模大,因此,高环境适... [目的/意义]农业传感器是数字农业、信息农业、智慧农业等现代农业发展模式的源头技术,也是推动农业科技迭代升级和农业生产方式变革的重要驱动力。农业传感器应用环境(水、气及土壤)和监测对象(动植物)多样复杂、规模大,因此,高环境适应性、高可靠性和低成本的农业传感器是实现智慧农业的基础与核心。[进展]本文对农业传感器进行分类,并对农业传感器前沿研究趋势进行分析,综述农业传感器在不同应用场景下的研究现状,从农业环境传感器(水、大气和土壤等)、动植物生命信息传感器、农产品质量安全传感器和农机传感器四大类进行深入分析,总结现有农业传感器在研发和使用过程中的通用性和局限性。[结论/展望]在农业传感器面临的挑战与展望中,具体分析了现阶段农业传感器大规模应用严重不足的核心瓶颈,包括低成本化、专用化、高稳定性及自适应,归纳出“农业泛在感知”的概念,为农业传感器技术研发提供思路和参考。 展开更多
关键词 农业传感器 泛在感知 环境传感器 土壤养分传感器 表型传感器 智慧农业
在线阅读 下载PDF
改进DeepLab v3+模型下的梯田遥感提取研究 被引量:2
8
作者 张俊 陈雨艳 +2 位作者 秦震宇 张梦瑶 张军 智慧农业(中英文) CSCD 2024年第3期46-57,共12页
[目的与意义]梯田作为农业生产的关键要素之一,其面积估算对于农业政策制定、土地规划和资源管理至关重要。为解决复杂的地形条件、种植环境导致传统遥感数据和监测方法难以开展梯田自动化提取问题,探索一种利用深度学习技术在高分辨率... [目的与意义]梯田作为农业生产的关键要素之一,其面积估算对于农业政策制定、土地规划和资源管理至关重要。为解决复杂的地形条件、种植环境导致传统遥感数据和监测方法难以开展梯田自动化提取问题,探索一种利用深度学习技术在高分辨率遥感影像中精准提取梯田面积的方法。[方法]以休耕期梯田高分六号影像构建语义分割数据集,同时提出一种改进的DeepLab v3+模型。该模型使用轻量级网络MobileNet v2作为骨干网络,为了同时兼顾局部细节和全局语境,使用多尺度特征融合(Multi-scale Feature Fusion module,MSFF)模块代替空洞空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块,利用扩张率依次增大的空洞卷积级联模式改善信息丢失的问题。此外,对浅层特征和深层特征使用坐标注意力机制以加强网络对于目标的学习。[结果与讨论]利用红、绿和近红外波段组合方式在梯田提取的精度和效果上表现最佳。相比于原始DeepLab v3+网络,精确率、召回率、F_(1)评分和交并比指标分别提升4.62%、2.61%、3.81%和2.81%。此外,与UNet和原始DeepLab v3+相比,改进的DeepLab v3+在参数量上和浮点运算数有着更为优越的性能,其参数量仅为UNet的28.6%和原始DeepLab v3+的19.5%,同时浮点运算数仅为UNet和DeepLab v3+的1/5。这不仅提高了计算效率,也使得改进后的模型更适用于资源有限或计算能力较低的环境中。[结论]深度学习在高分辨率遥感影像梯田识别中具有较高的精度,有利于为梯田精细化监测和管理提供参考依据。 展开更多
关键词 梯田提取 遥感 卷积神经网络 高分六号卫星 DeepLab v3+
在线阅读 下载PDF
设施农业机器人导航关键技术研究进展与展望 被引量:7
9
作者 何勇 黄震宇 +3 位作者 杨宁远 李禧尧 王玉伟 冯旭萍 智慧农业(中英文) CSCD 2024年第5期1-19,共19页
[目的/意义]随着科学技术的快速发展和劳动力成本的不断提高,机器人在设施农业领域的应用越来越广泛。设施环境复杂多样,如何让机器人实现稳定、精准、快速地导航仍然是当前需要解决的问题。[进展]本文基于设施农业智能机器人的自动导... [目的/意义]随着科学技术的快速发展和劳动力成本的不断提高,机器人在设施农业领域的应用越来越广泛。设施环境复杂多样,如何让机器人实现稳定、精准、快速地导航仍然是当前需要解决的问题。[进展]本文基于设施农业智能机器人的自动导航关键技术展开综述。在自主定位与地图构建方面,详细介绍了信标定位、惯性定位、即时定位与建图技术,以及融合定位方法。其中,依据使用的传感器不同,即时定位与建图技术可进一步划分为视觉、激光和融合三种不同类型。在全局路径规划方面,探讨了点到点局部路径规划和全局遍历路径规划在设施农业中的应用。针对规划目标数量的不同,详细介绍了单目标路径规划和多目标路径规划。此外,在机器人的自动避障技术方面,讨论了一系列设施农业中常用的避障控制算法。[结论/展望]总结了当前设施农业智能机器人自动导航技术面临的挑战,包括复杂环境、遮挡严重、成本高、作业效率低、缺乏标准化平台和公开数据集等问题。未来研究应重点关注多传感器融合、先进算法优化、多机器人协同作业,以及数据标准化与共享平台的建设。这些方向将有助于提升机器人在设施农业中的导航精度、效率和适应性,为智能农业的发展提供参考和建议。 展开更多
关键词 设施农业机器人 导航 定位 路径规划 避障
在线阅读 下载PDF
用于农产品冷链物流需求预测的GRA-WHO-TCN组合模型 被引量:7
10
作者 刘艳 季俊成 智慧农业(中英文) CSCD 2024年第3期148-158,共11页
[目的/意义]为了解决冷链物流需求预测在数字化转型中存在特征提取不充分、数据非线性程度高和算法易陷入局部最优等问题,提出一种结合灰色关联分析(Grey Relational Analysis,GRA)、野马优化算法(Wild Horse Optimizer,WHO)和时序卷积... [目的/意义]为了解决冷链物流需求预测在数字化转型中存在特征提取不充分、数据非线性程度高和算法易陷入局部最优等问题,提出一种结合灰色关联分析(Grey Relational Analysis,GRA)、野马优化算法(Wild Horse Optimizer,WHO)和时序卷积网络(Temporal Convolutional Networks,TCN)的组合预测模型,旨在解决需求预测精度不高的问题,以实现农产品供应链智能化管理。[方法]首先运用GRA对农产品冷链物流相关指标进行关联度筛选;其次采用TCN充分考虑农产品供应链中社会经济数据及物流信息中的时序性特征,并使用WHO对TCN模型超参数进行寻优;最后运用优化的GRA-WHO-TCN模型对浙江省冷链物流需求进行预测。[结果和讨论]采用WHO的时序算法TCN模型能够有效提取多维度数据的时序特征和空间特征,具备较好的拟合效果。与GRALSTM、GRA-TCN和GRA-WHO-LSTM模型相比,GRA-WHO-TCN冷链物流需求预测模型具有较低的均方根误差值(11.3)和有效的相关系数(0.95),且预测2016—2020年浙江省农产品冷链物流需求量分别为2980、3046、2487、2645和2799万吨,能够实现对冷链物流需求较高的预测精度。[结论]提出的GRA-WHO-TCN模型具备良好的优化和预测能力,能够为数字经济背景下农产品供应链物资流、信息流发展提供科学预测依据和实际参考价值。 展开更多
关键词 数字化转型 农产品供应链 冷链物流 灰色关联分析 野马优化算法 时序卷积网络
在线阅读 下载PDF
CSD-YOLOv8s:基于无人机图像的密集小目标羊只检测模型 被引量:1
11
作者 翁智 刘海鑫 郑志强 智慧农业(中英文) CSCD 2024年第4期42-52,共11页
[目的/意义]天然牧场下放牧牲畜数量的准确检测是规模化养殖场改造升级的关键。为满足规模化养殖场对大批羊群实现精准实时的检测需求,提出一种高精度、易部署的小目标检测模型CSD-YOLOv8s (CBAM SPPFCSPC DSConv-YOLOv8s),实现无人机... [目的/意义]天然牧场下放牧牲畜数量的准确检测是规模化养殖场改造升级的关键。为满足规模化养殖场对大批羊群实现精准实时的检测需求,提出一种高精度、易部署的小目标检测模型CSD-YOLOv8s (CBAM SPPFCSPC DSConv-YOLOv8s),实现无人机高空视角下小目标羊只个体的实时检测。[方法]首先,使用无人机获取天然草原牧场中包含不同背景及光照条件下的羊群视频数据并与下载的部分公开数据集共同构成原始图像数据。通过数据清洗和标注整理生成羊群检测数据集。其次,为解决羊群密集和相互遮挡造成的羊只检测困难问题,基于YOLO (You Only Look Once) v8模型构建具有跨阶段局部连接的SPPFCSPC (Spatial Pyramid Pooling Fast-CSPC)模块,提升网络特征提取和特征融合能力,增强模型对小目标羊只的检测性能。在模型的Neck部分引入了卷积注意力模块(Convolutional Block Attention Module, CBAM),从通道和空间两个维度增强网络的抗干扰能力,提升网络对复杂背景的抑制能力,进一步提高对密集羊群的检测性能。最后,为提升模型的实时性和可部署性,将Neck网络的标准卷积改为具有可变化内核的轻量卷积C2f_DS (C2f-DSConv)模块,减小了模型的参数量并提升了模型的检测速度。[结果和讨论]与YOLO、Faster R-CNN (Faster Regions with Convolutional Neural Networks)及其他经典网络模型相比,改进后的CSD-YOLOv8s模型在检测速度和模型大小相当的情况下,在羊群检测任务中具有更高的检测精度。Precision达到95.2%,mAP达到93.1%,FPS (Frames Per Second)达到87 f/s,并对不同遮挡程度的羊只目标具有较强的鲁棒性,有效解决了无人机检测任务中因羊只目标小、背景噪声大、密集程度高导致羊群漏检和误检严重的问题。公开数据集验证结果表明,提出的模型对其他不同物体的检测精度均有所提高,特别是在羊只检测方面,检测精度提升了9.7%。[结论]提出的CSD-YOLOv8s在无人机图像中更精准地检测草原放牧牲畜,对不同程度的聚集和遮挡目标实现精准检测,且具有较好的实时性,为养殖场大规模畜禽检测提供了技术支撑,具有广泛的应用潜力。 展开更多
关键词 羊只检测 YOLOv8 小目标 SPPFCSPC 注意力机制 深度可分离卷积
在线阅读 下载PDF
非接触电导检测土壤养分离子的谱峰自动识别方法
12
作者 唐超礼 李浩 +5 位作者 王儒敬 王乐 黄青 王大朋 张家宝 陈翔宇 智慧农业(中英文) CSCD 2024年第1期36-45,共10页
[目的/意义]电容耦合非接触式电导检测(Capacitively Coupled Contactless Conductivity Detection,C4D)在农业土壤养分离子检测方面发挥着重要作用。对C4D信号中离子特征峰的有效识别,有利于后续对离子特征峰的定性和定量分析,为加强... [目的/意义]电容耦合非接触式电导检测(Capacitively Coupled Contactless Conductivity Detection,C4D)在农业土壤养分离子检测方面发挥着重要作用。对C4D信号中离子特征峰的有效识别,有利于后续对离子特征峰的定性和定量分析,为加强农业土壤养分管理提供依据。然而,C4D信号的特征峰检测仍然存在无法自动精准识别、人工操作复杂、效率低等缺点。[方法]提出一种基于连续小波变换结合粒子群优化(Particle Swarm Optimization,PSO)和最大类间方差法(Otsu)的谱峰自动识别算法,旨在实现准确、高效、自动化的C4D信号峰识别。采用C4D检测样品溶液,得到离子谱图信号,对谱图信号进行连续小波变换,得到小波变换系数矩阵。通过搜索小波系数变换系数矩阵极值,识别出脊线和谷线。将小波系数矩阵转换为灰度图像,结合PSO和Otsu寻找最佳阈值,进一步对灰度图像的背景和目标分割,再结合原始谱图中的脊谷线识别谱图中的特征峰。[结果与讨论]测试含有41、61和102个峰的数据集,以受试者工作特性(Receiver Operating Characteristic,ROC)曲线和度量值作为评估峰值检测算法性能的准则。与其他方法相比,基于连续小波变换结合粒子群优化的最大类间方差法分割图像(Continuous Wavelet Transform C.ombined with Particle Swarm Optimization of Otsu to Segment Image,CWTSPSO)的谱峰自动识别算法的ROC曲线均保持在0.9以上,度量值分别为0.976、0.915和0.969。CWTSPSO能够有效检测出更多弱峰和重叠峰,同时检测出更少的假峰,有利于提升C4D信号的谱峰识别率和精准性。[结论]本研究提出的CWTSPSO能为非接触式电导检测农业土壤养分离子信号分析提供有力支持。 展开更多
关键词 非接触式电导检测 连续小波变换 粒子群优化算法 最大类间方差法 谱峰识别
在线阅读 下载PDF
差分隐私增强的大米区块链品控模型
13
作者 吴国栋 胡全兴 +2 位作者 刘旭 秦辉 高博文 智慧农业(中英文) CSCD 2024年第4期149-159,共11页
[目的/意义]针对传统大米品质监管追溯系统中存在的品控数据链机制不够完善、品控信息可追溯程度不足、数据上链效率低及隐私信息泄露等问题,提出一种差分隐私增强的大米区块链品控模型。[方法]首先,结合大米全产业链,设计数据传输流程... [目的/意义]针对传统大米品质监管追溯系统中存在的品控数据链机制不够完善、品控信息可追溯程度不足、数据上链效率低及隐私信息泄露等问题,提出一种差分隐私增强的大米区块链品控模型。[方法]首先,结合大米全产业链,设计数据传输流程,涵盖种植、收购、加工、仓储和销售等各环节,有效保证品控数据链的连续性;其次,为解决上链数据量大、上链效率低问题,将大米全产业链各环节关键品控数据存储于星际文件系统(InterPlanetary File System, IPFS),然后将存储完成后返回的哈希值上链;最后,为提高品控模型信息可追溯程度,将种植环节关键品控数据中涉及隐私的部分信息通过差分隐私(Differential Privacy)处理后展示给用户,模糊化个体数据,以提高品控信息可信度,同时也保护了农户种植隐私。基于该品控模型,设计了差分隐私增强的大米区块链品控系统,并在相关大米企业实际运行。[结果与讨论]经测试,差分隐私增强的大米区块链品控系统全产业链单环节数据完成存储平均耗时1.125 s,信息追溯查询平均耗时0.691 s。与传统大米品质监管追溯系统相比,单环节数据存储时间缩短6.64%,信息追溯查询时间缩短16.44%。[结论]研究提出的模型不仅提高了品控数据连续性和信息可追溯程度,同时保护了农户的隐私,还在一定程度上提升了品控数据存储及信息追溯查询的效率,可为大米品质监管与信息追溯系统的设计和改进提供参考。 展开更多
关键词 星际文件系统 区块链 品控 高效上链 差分隐私增强 信息追溯
在线阅读 下载PDF
农业大模型:关键技术、应用分析与发展方向 被引量:16
14
作者 郭旺 杨雨森 +3 位作者 吴华瑞 朱华吉 缪祎晟 顾静秋 智慧农业(中英文) CSCD 2024年第2期1-13,共13页
[目的/意义]近年来,人工智能在农业领域的应用取得了显著进展,但仍面临诸如模型数据收集标记困难、模型泛化能力弱等挑战。大模型技术作为近期人工智能领域新的热点技术,已在多个行业的垂直领域中展现出了良好性能,尤其在复杂关联表示... [目的/意义]近年来,人工智能在农业领域的应用取得了显著进展,但仍面临诸如模型数据收集标记困难、模型泛化能力弱等挑战。大模型技术作为近期人工智能领域新的热点技术,已在多个行业的垂直领域中展现出了良好性能,尤其在复杂关联表示、模型泛化、多模态信息处理等方面较传统机器学习方法有着较大优势。[进展]本文首先阐述了大模型的基本概念和核心技术方法,展示了在参数规模扩大与自监督训练下,模型通用能力与下游适应能力的显著提升。随后,分析了大模型在农业领域应用的主要场景;按照语言大模型、视觉大模型和多模态大模型三大类,在阐述模型发展的同时重点介绍在农业领域的应用现状,展示了大模型在农业上取得的研究进展。[结论/展望]对农业大模型数据集少而分散、模型部署难度大、农业应用场景复杂等困难提出见解,展望了农业大模型未来的发展重点方向。预计大模型将在未来提供全面综合的农业决策系统,并为公众提供专业优质的农业服务。 展开更多
关键词 生成式人工智能 大模型 农业知识服务 机器学习 自主决策 多模态 深度学习
在线阅读 下载PDF
智慧农业科技创新引领农业新质生产力发展路径 被引量:35
15
作者 曹冰雪 李鸿飞 +1 位作者 赵春江 李瑾 智慧农业(中英文) CSCD 2024年第4期116-127,共12页
[目的/意义]智慧农业科技是农业领域又一次新技术革命,具备农业新质生产力“高科技、高效能、高质量、可持续”的内在特征,已成为推进农业新质生产力发展的重要内核与引擎。[进展]本文对智慧农业科技创新的现实基础、内在逻辑与问题挑... [目的/意义]智慧农业科技是农业领域又一次新技术革命,具备农业新质生产力“高科技、高效能、高质量、可持续”的内在特征,已成为推进农业新质生产力发展的重要内核与引擎。[进展]本文对智慧农业科技创新的现实基础、内在逻辑与问题挑战开展系统研究,结论表明中国“表型+基因型+环境型”智能育种已迈入快车道,农业天、空、地信息感知技术体系逐渐成熟,农业大数据与智能决策技术研究探索不断推进,面向不同领域的智能农机装备创制取得丰硕成果。智慧农业科技创新通过赋能农业要素、技术、场景、主体与价值,推动农业新质生产力发展。但也面临科技创新政策体系不健全、关键技术存在卡点堵点断点、科创成果转化落地难度较大、支撑体系不够完备等重大挑战。[结论/展望]聚焦问题导向,提出了中国智慧农业科技创新平台、技术、场景、人才的“四高”路径,并围绕顶层设计、政策供给、先行实践、生态体系等层面,提出智慧农业科技创新引领农业新质生产力发展的对策建议。 展开更多
关键词 智慧农业 科技创新 农业新质生产力 数据要素 智能育种
在线阅读 下载PDF
农田土壤理化参数快速获取技术研究进展与展望 被引量:8
16
作者 齐江涛 程盼婷 +2 位作者 高芳芳 郭丽 张瑞瑞 智慧农业(中英文) CSCD 2024年第3期17-33,共17页
[目的/意义]土壤是农业基本的生产资料,其质量与农业高效生产和可持续发展密切相关。由于以往对农田的高强度利用以及土壤侵蚀等原因,导致部分农田出现土壤有机质明显下降、地力减弱和生态功能退化等现象。土壤理化参数作为揭示土壤空... [目的/意义]土壤是农业基本的生产资料,其质量与农业高效生产和可持续发展密切相关。由于以往对农田的高强度利用以及土壤侵蚀等原因,导致部分农田出现土壤有机质明显下降、地力减弱和生态功能退化等现象。土壤理化参数作为揭示土壤空间特征、评估土壤肥力的关键指标,对农田可持续利用起着至关重要的作用。因此,土壤理化参数信息的快速获取极为必要。[进展]探讨了农田土壤理化参数获取技术的研究意义,总结了当前用于农田土壤理化参数信息获取的主要技术,包括以电化学分析和光谱分析为主的实验室快速检验技术,以电磁感应、探地雷达、多光谱、高光谱和热红外为主的近地快速感知技术,以直接反演法、间接反演法和结合分析法为主的卫星遥感技术,以及近年的新型快速获取技术,如生物传感、环境磁学、太赫兹光谱和伽马能谱等,梳理了各方法的优缺点及适用情况。[结论/展望]结合农田环境的作业需求,依据未来研究的侧重方向提出发展建议,包括开发便携化、智能化和经济型的近地土壤信息获取系统及设备,实现土壤信息的原位快速检测。优化低空土壤信息获取平台的性能,完善数据的解译方法;联合多因素构建卫星遥感反演模型,利用多种共享开放的云计算平台实现数据的深度挖掘。深入探索多源数据融合在土壤理化参数信息获取中的研究与应用,构建泛化能力强、可靠性高的土壤信息感知算法和模型等,从而实现土壤理化参数信息快速、精准和智能化获取。 展开更多
关键词 土壤理化参数 光谱分析 电磁感应 探地雷达 卫星遥感 快速感知
在线阅读 下载PDF
丘陵山地拖拉机调平与防翻关键技术研究现状与发展趋势 被引量:8
17
作者 牟孝栋 杨福增 +4 位作者 段罗佳 刘志杰 宋卓颖 李宗霖 管寿青 智慧农业(中英文) CSCD 2024年第3期1-16,共16页
[目的/意义]丘陵山区的机械化、智能化是未来农机行业研究和发展的热点。中国丘陵山区耕地面积占比超过50%,且面临坡陡路窄、地块碎小、地形地貌复杂等多种环境因素制约,各生产环节存在“无机可用,无好机用”的现实问题,并且缺乏适合丘... [目的/意义]丘陵山区的机械化、智能化是未来农机行业研究和发展的热点。中国丘陵山区耕地面积占比超过50%,且面临坡陡路窄、地块碎小、地形地貌复杂等多种环境因素制约,各生产环节存在“无机可用,无好机用”的现实问题,并且缺乏适合丘陵山区大坡度农机装备研发的理论支撑。[进展]综述了国内外丘陵山地拖拉机调平及防翻系统的研究现状。其中拖拉机车身调平技术平行四杆与液压差高式结构简单,折腰扭腰式更适合连续起伏的崎岖路面,重心可调与全向调平式坡地牵引性与适应性均较好;驾驶室及座椅调平技术基于角度传感器自适应控制,关键在于缓解驾驶疲劳提高舒适度;车身与农具姿态协同控制技术大都采用PID控制技术实现协同控制,但缺乏作业效果反馈机制;拖拉机防翻保护装置与预警技术在防翻保护架的基础上,通过环境模拟感知提前预判翻车危险信号并及时反馈。[结论/展望]未来丘陵山地拖拉机调平、防翻预警及无人化、自动化技术的发展方向:1)结构优化、灵敏度高、稳定性好的山地拖拉机调平系统研究;2)坡地适应性好的农机具仿形系统研究;3)环境感知、自动干涉的防翻预警技术研究;4)农机精准导航技术、智能化监测技术和农机作业远程调度与管理技术研究;5)坡地纵向稳定性理论研究。以期为研发符合中国丘陵山地复杂作业环境的高可靠性、高安全性山地拖拉机提供借鉴参考。 展开更多
关键词 丘陵山地 拖拉机调平 悬挂机具调平 防翻系统 侧翻
在线阅读 下载PDF
猪三维点云体尺自动计算模型Pig Back Transformer 被引量:3
18
作者 王宇啸 石源源 +4 位作者 陈招达 吴珍芳 蔡更元 张素敏 尹令 智慧农业(中英文) CSCD 2024年第4期76-90,共15页
[目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰。然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间... [目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰。然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间。本研究旨在通过设计关键点生成网络从猪体点云中提取出各体尺测量所需关键点。在降低显存资源需求的同时提高测量关键点定位效果,提高体尺测量的效率和精度。[方法]针对猪三维表面点云进行体尺测量,提出了一种定位猪体尺关键点的模型Pig Back Transformer。模型分为两个模块,分别设计了两种改进的Transformer自注意力编码器,第一模块为全局关键点模块,首先设计了一种猪背部边缘点提取算法用于获取边缘点,再使用edge encoder编码器以边缘点集合作为输入,edge encoder的edge attention中加入了边缘点和质点的偏移距离信息;第二模块为关键点生成模块,使用了back attention机制的back encoder,其中加入了与质心和第一模块生成的全局关键点的偏移量,并将偏移量与点云注意力通过按位max pooling操作结合,最后通过生成猪的体尺测量关键点和背脊走向点。最后设计了使用关键点和背脊走向点作为输入的体尺算法。[结果和讨论]对比关键点和背脊走向点生成任务上Pig Back Transformer表现最佳,并对比体尺计算结果与人工测量结果,体长相对误差为0.63%,相对PointNet++、Point Transformer V2、Point Cloud Transforme、OctFormer PointTr等模型有较大提升。[结论] Pig Back Transformer能相对准确地生成猪体尺关键点,提高体尺测量数据准确度,并且通过点云特征定位体尺关键点节省了计算资源,为无接触牲畜体尺测量提供了新思路。 展开更多
关键词 Pig Back Transformer 三维点云 体尺自动测量 测量关键点定位 深度相机 自注意力机制
在线阅读 下载PDF
基于改进YOLOv8s的大田甘蓝移栽状态检测算法 被引量:3
19
作者 吴小燕 郭威 +2 位作者 朱轶萍 朱华吉 吴华瑞 智慧农业(中英文) CSCD 2024年第2期107-117,共11页
[目的/意义]借助智能化识别及图像处理等技术来实现对移栽后蔬菜状态的识别和分析,将会极大提高识别效率。为了实现甘蓝大田移栽情况的实时监测和统计,提高甘蓝移栽后的成活率以及制定后续工作方案,减少人力和物力的浪费,研究一种自然... [目的/意义]借助智能化识别及图像处理等技术来实现对移栽后蔬菜状态的识别和分析,将会极大提高识别效率。为了实现甘蓝大田移栽情况的实时监测和统计,提高甘蓝移栽后的成活率以及制定后续工作方案,减少人力和物力的浪费,研究一种自然环境下高效识别甘蓝移栽状态的算法。[方法]采集移栽后的甘蓝图像,利用数据增强方式对数据进行处理,输入YOLOv8s(You Only Look Once Version 8s)算法中进行识别,通过结合可变形卷积,提高算法特征提取和目标定位能力,捕获更多有用的目标信息,提高对目标的识别效果;通过嵌入多尺度注意力机制,降低背景因素干扰,增加算法对目标区域的关注,提高模型对不同尺寸的甘蓝的检测能力,降低漏检率;通过引入Focal-EIoU Loss(Focal Extended Intersection over Union Loss),优化算法定位精度,提高算法的收敛速度和定位精度。[结果和讨论]提出的算法经过测试,对甘蓝移栽状态的召回率R值和平均精度均值(Mean Average Precision,mAP)分别达到92.2%和96.2%,传输速率为146帧/s,可满足实际甘蓝移栽工作对移栽状态识别精度和速度的要求。[结论]提出的甘蓝移栽状态检测方法能够实现对甘蓝移栽状态识别的准确识别,可以提升移栽质量测量效率,减少时间和人力投入,提高大田移栽质量调查的自动化程度。 展开更多
关键词 甘蓝移栽 YOLOv8s 目标检测 多尺度注意力机制 可变形卷积
在线阅读 下载PDF
基于激光雷达与IMU融合的农业机器人定位方法 被引量:5
20
作者 刘洋 冀杰 +2 位作者 潘登 赵立军 李明生 智慧农业(中英文) CSCD 2024年第3期94-106,共13页
[目的/意义]精准可靠的定位技术是智能农业机器人开展自主导航作业的重要前提,而常用的全球卫星导航系统(Global Navigation Satellite System,GNSS)定位方法在农业环境中容易受到树木遮挡、电磁干扰等因素影响,因而,提出一种基于三维... [目的/意义]精准可靠的定位技术是智能农业机器人开展自主导航作业的重要前提,而常用的全球卫星导航系统(Global Navigation Satellite System,GNSS)定位方法在农业环境中容易受到树木遮挡、电磁干扰等因素影响,因而,提出一种基于三维激光雷达(Light Detection and Ranging,LiDAR)与惯性测量单元(Inertial Measurement Unit,IMU)信息融合的农业机器人定位方法。[方法]首先,利用基于角度的聚类方法对激光雷达点云数据进行信息处理,并与三维正态分布变换(3D Normal Distribution Transform,3D-NDT)定位算法相结合,在先验点云地图信息基础上实现基于激光雷达的实时定位;其次,为了克服单传感器定位方法的局限性,利用扩展卡尔曼滤波(Extended Kalman Filter,EKF)算法对激光雷达定位信息与IMU里程计信息进行融合,进一步提升农业机器人的定位精度。最后,分别在机器人操作系统(Robot Operating System,ROS)的Gazebo仿真环境中,以及真实作业场景中进行实验,验证提出的定位算法的有效性。[结果和讨论]融合定位方法在仿真环境中的纵向和横向平均定位误差分别为1.7和1.8 cm,而在实验中的纵向和横向平均定位误差分别为3.3和3.3 cm,均小于传统3D-NDT定位算法的定位误差。[结论]提出的融合定位方法能够满足农业机器人在弱GNSS环境下自主作业的定位要求,为农业机器人提供了一种新的定位方法。 展开更多
关键词 农业机器人 激光雷达定位 点云匹配 扩展卡尔曼滤波 传感器融合
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部