针对需求可拆分的多品种库存路径问题(multi-product inventory routing problem with split deliveries,MIRPSD),提出一种基于最小化库存持有成本、运输成本和车辆使用总成本的车辆路径优化模型。同时考虑每个客户的交货计划及每种货...针对需求可拆分的多品种库存路径问题(multi-product inventory routing problem with split deliveries,MIRPSD),提出一种基于最小化库存持有成本、运输成本和车辆使用总成本的车辆路径优化模型。同时考虑每个客户的交货计划及每种货物的运输数量。设计混合遗传算法进行求解,引入扰动策略以提高搜索效率,并通过实验选取合适的参数。探讨了平均日需求量与车辆载重量的比值、单位库存持有成本对需求拆分策略及总配送成本的影响。多组算例试验表明,本文提出的模型和算法可有效解决该问题。当需求量服从正态分布且平均日需求量为车辆载重量的55%时,采用需求拆分策略的效果最佳。本研究拓展了库存路径问题的相关理论,既可为解决MIRPSD问题提供一种新思路,也可为物流企业的相关决策提供理论依据。展开更多
文摘针对需求可拆分的多品种库存路径问题(multi-product inventory routing problem with split deliveries,MIRPSD),提出一种基于最小化库存持有成本、运输成本和车辆使用总成本的车辆路径优化模型。同时考虑每个客户的交货计划及每种货物的运输数量。设计混合遗传算法进行求解,引入扰动策略以提高搜索效率,并通过实验选取合适的参数。探讨了平均日需求量与车辆载重量的比值、单位库存持有成本对需求拆分策略及总配送成本的影响。多组算例试验表明,本文提出的模型和算法可有效解决该问题。当需求量服从正态分布且平均日需求量为车辆载重量的55%时,采用需求拆分策略的效果最佳。本研究拓展了库存路径问题的相关理论,既可为解决MIRPSD问题提供一种新思路,也可为物流企业的相关决策提供理论依据。