传统的水岩反应实验中,流体在高温高压条件下发生淋滤反应之后,一些物质很容易在冷却过程中发生二次沉淀或吸附,从而影响实验结果的准确性。人工合成流体包裹体技术能在高温高压条件下对流体进行原位取样,再通过激光剥蚀电感耦合等离子...传统的水岩反应实验中,流体在高温高压条件下发生淋滤反应之后,一些物质很容易在冷却过程中发生二次沉淀或吸附,从而影响实验结果的准确性。人工合成流体包裹体技术能在高温高压条件下对流体进行原位取样,再通过激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)进行成分分析,直接获得高温流体的物质组成,可以有效避免这一问题。本研究模拟兰坪地区盆地卤水(NaCl/NaCl+CaCl_(2))与基底岩石(三叠纪辉绿岩、二叠系岩屑灰岩和中三叠统凝灰岩)在高温高压条件下(200℃、10 MPa)发生水岩反应的过程,通过方解石人工合成流体包裹体技术,研究水岩反应对流体成分的影响,探讨流体中成矿元素的来源,以及与盆地内密西西比河谷型(Mississippi Valley-type,MVT)铅锌矿床在成因上的关系。显微测温表明,初始流体为3 m NaCl+0.15 m CaCl_(2)体系的人工合成流体包裹体的冰点温度介于-13.6~-11.4℃之间,初始流体为3 m NaCl体系的合成包裹体的冰点温度介于-11.8~-10.7℃之间,NaCl体系合成包裹体的冰点温度高于NaCl+CaCl_(2)体系的冰点温度,表明人工合成的包裹体流体组分与初始流体组分一致。结合显微测温分析及单个流体包裹体的LA-ICP-MS原位成分分析测试,证实以方解石为寄主矿物合成水岩反应流体包裹体的实验方法在低温流体-岩石相互作用模拟领域具有广阔的应用前景。展开更多
文摘传统的水岩反应实验中,流体在高温高压条件下发生淋滤反应之后,一些物质很容易在冷却过程中发生二次沉淀或吸附,从而影响实验结果的准确性。人工合成流体包裹体技术能在高温高压条件下对流体进行原位取样,再通过激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)进行成分分析,直接获得高温流体的物质组成,可以有效避免这一问题。本研究模拟兰坪地区盆地卤水(NaCl/NaCl+CaCl_(2))与基底岩石(三叠纪辉绿岩、二叠系岩屑灰岩和中三叠统凝灰岩)在高温高压条件下(200℃、10 MPa)发生水岩反应的过程,通过方解石人工合成流体包裹体技术,研究水岩反应对流体成分的影响,探讨流体中成矿元素的来源,以及与盆地内密西西比河谷型(Mississippi Valley-type,MVT)铅锌矿床在成因上的关系。显微测温表明,初始流体为3 m NaCl+0.15 m CaCl_(2)体系的人工合成流体包裹体的冰点温度介于-13.6~-11.4℃之间,初始流体为3 m NaCl体系的合成包裹体的冰点温度介于-11.8~-10.7℃之间,NaCl体系合成包裹体的冰点温度高于NaCl+CaCl_(2)体系的冰点温度,表明人工合成的包裹体流体组分与初始流体组分一致。结合显微测温分析及单个流体包裹体的LA-ICP-MS原位成分分析测试,证实以方解石为寄主矿物合成水岩反应流体包裹体的实验方法在低温流体-岩石相互作用模拟领域具有广阔的应用前景。