为克服单一赋权法的局限性,结合山区干线公路交通特征及交通安全评价指标的选取原则,从社会因素、驾驶因素、环境因素、管理因素和道路因素五个维度出发,选取18个综合评价指标,运用序关系分析法(Order Relation Analysis Method,G1)-指...为克服单一赋权法的局限性,结合山区干线公路交通特征及交通安全评价指标的选取原则,从社会因素、驾驶因素、环境因素、管理因素和道路因素五个维度出发,选取18个综合评价指标,运用序关系分析法(Order Relation Analysis Method,G1)-指标相关性权重确定法(Criteria Importance Through Intercriteria Correlation,CRITIC)确定各评价指标的权重,并结合折中妥协多属性决策法(VlseKriterijumska Optimizacija I Kompromisno Resenje,VIKOR)对山区干线公路交通安全进行综合评价,提出了基于G1-CRITIC-VIKOR模型的山区干线公路交通安全综合评价及比选方法。以中国西部6条山区干线公路为例进行实证研究,结果表明,G1-CRITIC-VIKOR模型的评价效果与传统的秩和比(Rank-Sum Ratio,RSR)综合评价法及加权逼近理想解排序法(Technique for Order Preference by Similarity to Ideal Solution,TOPSIS)的评价结果基本一致,且评价效果明显优于后者,具有更好的辨识性,验证了该模型的可行性和科学性。展开更多
目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词...目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词抽取的双向编码器表征法和双向长短时记忆网络的深度学习模型(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory,BERT-BiLSTM)。该模型通过对不正常事件文本进行信息抽取,过滤其中无用信息,并将双向编码器表征法(Bidirectional Encoder Representations from Transformers,BERT)模型输出的特征向量序列作为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的输入序列,以对空管不正常事件文本风险识别任务进行对比试验。试验结果显示,在风险识别试验中,基于空管专业信息词抽取的BERT-BiLSTM模型相比于通用领域的BERT模型,风险识别准确率提升了3百分点。可以看出该模型有效提升了空管安全信息处理能力,能够有效识别空管部门日常运行中出现的不正常事件所带来的风险,同时可以为空管安全领域信息挖掘相关任务提供基础参考。展开更多
文摘为克服单一赋权法的局限性,结合山区干线公路交通特征及交通安全评价指标的选取原则,从社会因素、驾驶因素、环境因素、管理因素和道路因素五个维度出发,选取18个综合评价指标,运用序关系分析法(Order Relation Analysis Method,G1)-指标相关性权重确定法(Criteria Importance Through Intercriteria Correlation,CRITIC)确定各评价指标的权重,并结合折中妥协多属性决策法(VlseKriterijumska Optimizacija I Kompromisno Resenje,VIKOR)对山区干线公路交通安全进行综合评价,提出了基于G1-CRITIC-VIKOR模型的山区干线公路交通安全综合评价及比选方法。以中国西部6条山区干线公路为例进行实证研究,结果表明,G1-CRITIC-VIKOR模型的评价效果与传统的秩和比(Rank-Sum Ratio,RSR)综合评价法及加权逼近理想解排序法(Technique for Order Preference by Similarity to Ideal Solution,TOPSIS)的评价结果基本一致,且评价效果明显优于后者,具有更好的辨识性,验证了该模型的可行性和科学性。
文摘目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词抽取的双向编码器表征法和双向长短时记忆网络的深度学习模型(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory,BERT-BiLSTM)。该模型通过对不正常事件文本进行信息抽取,过滤其中无用信息,并将双向编码器表征法(Bidirectional Encoder Representations from Transformers,BERT)模型输出的特征向量序列作为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的输入序列,以对空管不正常事件文本风险识别任务进行对比试验。试验结果显示,在风险识别试验中,基于空管专业信息词抽取的BERT-BiLSTM模型相比于通用领域的BERT模型,风险识别准确率提升了3百分点。可以看出该模型有效提升了空管安全信息处理能力,能够有效识别空管部门日常运行中出现的不正常事件所带来的风险,同时可以为空管安全领域信息挖掘相关任务提供基础参考。