期刊文献+

为您找到了以下期刊:

共找到4,188篇文章
< 1 2 210 >
每页显示 20 50 100
一种基于预训练的条件文本生成方法
1
作者 邵党国 孔宪媛 +3 位作者 马磊 安青 黄琨 相艳 中文信息学报 北大核心 2025年第7期127-137,共11页
随着电子商务的发展,人们需要从产品的评论中更加全面地了解产品信息,高质量的评论文本对于客户黏度和社会舆论发挥着重要作用。传统的中文文本生成模型表现良好,却不能有效结合先验知识并根据条件情感输入生成对应情感极性的文本。该... 随着电子商务的发展,人们需要从产品的评论中更加全面地了解产品信息,高质量的评论文本对于客户黏度和社会舆论发挥着重要作用。传统的中文文本生成模型表现良好,却不能有效结合先验知识并根据条件情感输入生成对应情感极性的文本。该文提出一种条件评论文本生成模型,将预训练语言模型与生成对抗网络结合起来,利用预训练模型较好的语言理解能力学习真实文本中概率分布。该文通过在生成器层标准化中引入条件层标准化,达到根据输入情感标签自动生成对应情感极性文本的目的。在电商评论数据集上的实验表明,该模型相较于传统的Seq2Seq模型和SeqGAN模型,不仅引入条件情感输入,并且生成效果更优、文本质量更高。 展开更多
关键词 BERT SeqGAN 条件层标准化 条件文本生成
在线阅读 下载PDF
基于模块交互和依存关系的生物医学事件检测
2
作者 张勇 左皓阳 +1 位作者 苏莹 周光有 中文信息学报 北大核心 2025年第6期119-126,共8页
该文提出一种基于模块交互和依存关系的生物医学事件检测模型。该模型在事件检测模块中融入了命名实体识别模块与图卷积策略,充分利用数据集中的标注信息和远距离依存关系来提高文本的语义表示。该模型同时构造了一个命名实体识别模块... 该文提出一种基于模块交互和依存关系的生物医学事件检测模型。该模型在事件检测模块中融入了命名实体识别模块与图卷积策略,充分利用数据集中的标注信息和远距离依存关系来提高文本的语义表示。该模型同时构造了一个命名实体识别模块和一个事件检测模块,并将命名实体识别模块中训练的语义特征拼接到事件检测模块,以增强事件检测的语义信息。同时,该模型还在事件检测模块中集成了基于门控机制的图卷积层,以利用依存句法信息来提高单词之间远距离依存关系的建模能力。在生物医学事件检测数据集上的实验结果显示,该模型的F_(1)值达到了81.63%,整体性能优于其他模型,显示了模块交互与图卷积策略在提升生物医学事件检测方面的有效性。 展开更多
关键词 生物医学事件检测 模块交互 命名实体识别 图卷积
在线阅读 下载PDF
基于关系图卷积神经网络的跨句实体关系抽取
3
作者 陈千 关春祥 +1 位作者 郭鑫 王素格 中文信息学报 北大核心 2025年第7期62-71,共10页
相对于句子级关系抽取,涉及关系的实体存在于多个句子中的情况在实际场景中更常见。因此篇章级关系抽取逐渐成为近年来信息抽取领域的研究热点。为了充分利用上下文信息和篇章结构信息,该文采用实体嵌入表示和实体间的显式结构关系研究... 相对于句子级关系抽取,涉及关系的实体存在于多个句子中的情况在实际场景中更常见。因此篇章级关系抽取逐渐成为近年来信息抽取领域的研究热点。为了充分利用上下文信息和篇章结构信息,该文采用实体嵌入表示和实体间的显式结构关系研究跨句实体关系抽取。首先,对篇章进行编码和构图;进而,使用关系图卷积神经网络对图节点进行更新,并利用融合篇章全局信息的节点嵌入表示更新边嵌入表示;最后,该模型使用一种迭代算法完成边信息的推理,实现跨句实体关系抽取。实验结果表明,相比基线模型,在CDR和GDA数据集上的跨句实体关系抽取性能得到了显著提高。 展开更多
关键词 关系图卷积神经网络 跨句实体关系抽取 实体嵌入
在线阅读 下载PDF
基于潜层主题结构表示增强的跨领域文本生成
4
作者 刘小明 赵梦婷 +1 位作者 杨关 刘杰 中文信息学报 北大核心 2025年第5期150-163,176,共15页
现有的低资源生成模型大多使用预训练的词嵌入来解决目标领域数据稀疏问题,但这种方法难以捕捉不同领域间的潜层结构信息,经常忽略潜在主题对捕捉关键信息的重要作用。为了解决这些问题,该文联合神经主题模型提取潜在主题,从而为生成的... 现有的低资源生成模型大多使用预训练的词嵌入来解决目标领域数据稀疏问题,但这种方法难以捕捉不同领域间的潜层结构信息,经常忽略潜在主题对捕捉关键信息的重要作用。为了解决这些问题,该文联合神经主题模型提取潜在主题,从而为生成的语句选择提供全局特征,并结合词嵌入和主题嵌入,增强模型对潜在主题信息的利用,然后通过对不同领域的主题对齐,捕捉相似潜层主题结构表示。在文本生成不同任务的数据集上进行的大量实验表明,该模型在摘要生成任务的六个低资源领域数据集、CNN/DailyMail数据集和SAMsum数据集上的ROUGE-1均值相较于基准模型分别提高了0.92%、3.71%和1.0%;在对话生成任务中,该模型在ESConv数据集上的各项指标也表现出良好的结果。 展开更多
关键词 低资源 结构特征 主题模型
在线阅读 下载PDF
RESCAL-DLP:融合动态学习二元组的图谱嵌入模型
5
作者 冯勇 闫寒 +2 位作者 徐红艳 徐涵琪 贾永鑫 中文信息学报 北大核心 2025年第7期17-26,共10页
知识图谱现有数据集大多因不够完整导致嵌入表示不准确,目前主要是通过添加信息来保证嵌入准确性,但存在过多依赖添加三元组以外的附加信息、忽略挖掘三元组自身的有效信息等问题。二元组是由三元组中的关系与头实体或尾实体组成的实体... 知识图谱现有数据集大多因不够完整导致嵌入表示不准确,目前主要是通过添加信息来保证嵌入准确性,但存在过多依赖添加三元组以外的附加信息、忽略挖掘三元组自身的有效信息等问题。二元组是由三元组中的关系与头实体或尾实体组成的实体关系对,当前研究较少考虑利用二元组潜在的语义信息来提升嵌入的效果。为此,该文提出了一种融合动态学习二元组的图谱嵌入模型(RESCAL-DLP)。首先,使用正负实例构建策略进行数据扩充,使数据集包含更丰富的二元组的特征信息;其次,通过对比学习二元组的语义相似度来加强模型的学习能力,提升嵌入效果;最后,动态调整二元组学习权重进行模型训练。在两个公开标准数据集WN18RR、FB15K-237上进行链接预测实验以评估所提模型的效果。实验结果表明,所提模型相较于当前主流模型在各项指标上均有一定的提升,并在最小化计算资源和模型训练时间的前提下,取得了令人满意的结果。 展开更多
关键词 知识图谱 嵌入表示 数据扩充 二元组 对比学习
在线阅读 下载PDF
一种注意力引导知识增强的事件因果关系识别方法
6
作者 徐博 孙晋辰 +1 位作者 林鸿飞 宗林林 中文信息学报 北大核心 2025年第1期89-100,共12页
事件因果关系识别是自然语言处理领域的重要任务,由于因果关系表达方式多样且以隐式表达为主,现有方法难以准确识别。该文将外部结构化知识融入事件因果关系识别任务,提出一种注意力引导知识增强的事件因果关系识别方法。首先,通过BERT... 事件因果关系识别是自然语言处理领域的重要任务,由于因果关系表达方式多样且以隐式表达为主,现有方法难以准确识别。该文将外部结构化知识融入事件因果关系识别任务,提出一种注意力引导知识增强的事件因果关系识别方法。首先,通过BERT模型对事件对及其上下文进行编码;然后,提出零跳混合匹配方案挖掘事件相关的描述型知识和关系型知识,通过注意力机制对事件的描述型知识序列进行编码,通过稠密图神经网络对事件对的关系型知识进行编码。最后,融合前三个编码模块识别事件因果关系。基于EventStoryLine和Causal-TimeBank数据集的实验结果表明,该文所构建模型的识别效果优于现有模型,在零跳概念匹配、描述性和关系型知识编码等层面均获得了识别性能的提升。 展开更多
关键词 事件抽取 因果识别 知识图谱 注意力机制 自然语言处理
在线阅读 下载PDF
基于词性对齐与依存关系的中文排比句生成方法
7
作者 钟茂生 刘蕾 +2 位作者 吴如萍 甘家其 周新宇 中文信息学报 北大核心 2025年第2期131-142,共12页
排比句是一种常用的修辞手法,其使用具有增强气势、强调突出、层次清晰的效果。排比句生成对于文本生成具有重要意义,能够丰富文本生成的风格和形式,提升教育、广告和文学创作的质量,但目前暂无生成模型和公开的排比句语料库。为此,该... 排比句是一种常用的修辞手法,其使用具有增强气势、强调突出、层次清晰的效果。排比句生成对于文本生成具有重要意义,能够丰富文本生成的风格和形式,提升教育、广告和文学创作的质量,但目前暂无生成模型和公开的排比句语料库。为此,该文在收集和构建排比句数据集的基础上,结合排比句具有的语言学特征,提出了一种基于词性对齐与依存关系的中文排比句生成模型,称为CPG-PosDep。模型从语言学出发,首先用设定的分词、句内词序和句间位置三种特殊符号及随机采样策略对排比句进行全局标识,并结合改进的Transformer注意力机制学习排比句的词性对齐特征,然后使用BERT和注意模块将给定分句的依存关系信息融入模型中,融合生成排比句。在排比句数据集上的实验表明,模型能够生成与给定分句在对应位置词性一致、依存关系相同的通顺分句,相比使用现有对联或诗歌生成模型生成的排比句,该文所提模型生成的排比句质量更具优势。 展开更多
关键词 中文排比句生成 词性对齐 随机采样策略 依存关系
在线阅读 下载PDF
基于链接策略和不同粒度特征融合的极限多标签文本分类模型
8
作者 胡婕 郑启扬 +1 位作者 曹芝兰 刘梦赤 中文信息学报 北大核心 2025年第3期84-95,共12页
现有基于Transformer的极限多标签文本分类模型尽管引入了标签语义,但利用标签语义来探索文本和标签之间的语义潜在关系仍存在不足。对此,该文将标签合并成序列,并使用链接策略在同一空间内联合学习文本和标签特征来捕获文本和标签的语... 现有基于Transformer的极限多标签文本分类模型尽管引入了标签语义,但利用标签语义来探索文本和标签之间的语义潜在关系仍存在不足。对此,该文将标签合并成序列,并使用链接策略在同一空间内联合学习文本和标签特征来捕获文本和标签的语义。然后,通过注意力机制将标签语义和文档内容相结合生成感知文本,有效地探索文本信息和标签语义的交互关系。此外,该文通过融合机制将粗粒度层次特征和细粒度特征相结合,帮助模型更好地学习不同层次粒度的文档语义信息。在三个公开的数据集Eurlex-4K、Wiki10-30K和Kan-Shan Cup上进行了模型验证,实验结果表明,该文所提模型P@k值优于对比模型,综合性能得到有效提升。 展开更多
关键词 极限多标签文本分类 链接策略 感知文本 细粒度特征
在线阅读 下载PDF
基于异构用户知识融合的隐式情感分析研究
9
作者 廖健 张楷 +2 位作者 王素格 雷佳 张益阳 中文信息学报 北大核心 2025年第3期117-128,共12页
隐式情感分析因其缺乏显式情感线索的特性是情感分析领域的重要研究难点之一。传统的隐式情感分析方法通常针对隐式情感文本本身的信息进行建模,没有考虑隐式情感的主观差异性特征。该文提出了一种基于异构用户知识融合的隐式情感分析模... 隐式情感分析因其缺乏显式情感线索的特性是情感分析领域的重要研究难点之一。传统的隐式情感分析方法通常针对隐式情感文本本身的信息进行建模,没有考虑隐式情感的主观差异性特征。该文提出了一种基于异构用户知识融合的隐式情感分析模型HELENE,从用户数据中挖掘用户异构的内容知识、社会化属性知识以及社会化关系知识,基于图神经网络模型结合动态预训练模型分别从内、外部两个维度对用户进行建模;在此基础上与隐式情感文本语义信息进行融合学习,实现对隐式情感进行主观差异化建模。此外,该文构建了一个用户个性化通用情感分析语料库,涵盖了较为完整的文本内容信息、用户社会化属性信息和关系信息,可同时满足面向用户个性化建模的隐式或显式情感分析相关研究任务的需要。在所构建数据集上的实验结果显示,该文方法相比基线模型在用户个性化隐式情感分析任务上具有显著的提升效果。 展开更多
关键词 隐式情感分析 用户知识建模 异构知识融合
在线阅读 下载PDF
基于隔行对照标注策略的少数民族古文献开发研究——以藏文古文献隔行标注为例
10
作者 龙从军 安波 赵维纳 中文信息学报 北大核心 2025年第3期49-58,共10页
少数民族古籍是我国古籍文献的重要组成部分,是中华文明不可或缺的文明成果。但受制于语言文字识读的限制,参与民族古籍整理、挖掘和开发利用的研究团队规模小,技术力量不足,民族古籍文献的利用和普及传播力度不够。基于此,该文提出民... 少数民族古籍是我国古籍文献的重要组成部分,是中华文明不可或缺的文明成果。但受制于语言文字识读的限制,参与民族古籍整理、挖掘和开发利用的研究团队规模小,技术力量不足,民族古籍文献的利用和普及传播力度不够。基于此,该文提出民族古籍隔行对照标注策略,旨在一定程度上解决文字识读困难,鼓励更多跨学科研究者参与民族古籍文献的研究,提高民族古籍开发效率。该文以藏文古文献为例,探索隔行标注策略,在人工标注一定规模语料的前提下,提出了基于多任务学习的隔行对照标注策略。该方法有效提升了隔行数据标注速度,减少了人工标注的工作量,有利于构建大规模的隔行对照数据库。实验结果表明,经过10000条标注语料训练后,该模型在分词行和标注行上分别取得70.9%和63.2%的F 1值,在翻译行上取得18.7%的BLEU值。基于隔行对照标注策略的方法显著地提升了民族古文献的研究范围和深度,避免了民族语本身带来的限制,为挖掘和弘扬中华民族传统文化贡献力量。 展开更多
关键词 藏文古文献 隔行标注 多任务学习 机器学习 民族古文献
在线阅读 下载PDF
KAACNN:融合知识图谱和预训练模型的短文本多标签分类方法
11
作者 陶冶 徐锴 +2 位作者 刘天宇 鲁超峰 王浩杰 中文信息学报 北大核心 2025年第3期96-106,共11页
短文本分类是自然语言处理的重要任务之一。与段落或文档不同,短文本不完全遵循语法规则,长度短并且没有足够的上下文信息,这给短文本分类带来了很大的挑战。该文提出一种结合知识图谱和预训练语言模型的短文本分类方法,一方面使用预训... 短文本分类是自然语言处理的重要任务之一。与段落或文档不同,短文本不完全遵循语法规则,长度短并且没有足够的上下文信息,这给短文本分类带来了很大的挑战。该文提出一种结合知识图谱和预训练语言模型的短文本分类方法,一方面使用预训练语言模型提高短文本的文本表示能力;另一方面从外部知识库中检索短文本概念知识,并利用注意力机制将其与短文本结合用于分类任务。此外,针对数据集类别分布不均衡的问题,该文提出基于领域类别知识图谱的数据增强方法。在三个公共数据集和一个汽车领域客户原话数据集上进行了实验,结果表明,引入知识图谱和预训练语言模型的分类方法优于目前先进的短文本分类方法,证明了外部知识库和预训练语言模型的先验知识在短文本分类中的有效性。 展开更多
关键词 知识图谱 注意力机制 预训练语言模型 数据增强 短文本分类
在线阅读 下载PDF
基于情感增强非参数模型的社交媒体观点聚类
12
作者 刘勘 陈昱 何佳瑞 中文信息学报 北大核心 2025年第3期148-158,共11页
观点分析对于社交媒体这一关键的网络舆论阵地有着重要的现实意义。该文基于非参数模型的文本聚类技术,将社交媒体文本根据用户主张的观点汇总,直观呈现用户群体所持有的不同立场。针对社交媒体文本长度短、数量多、情感丰富等特点,该... 观点分析对于社交媒体这一关键的网络舆论阵地有着重要的现实意义。该文基于非参数模型的文本聚类技术,将社交媒体文本根据用户主张的观点汇总,直观呈现用户群体所持有的不同立场。针对社交媒体文本长度短、数量多、情感丰富等特点,该文提出使用情感分布增强(Sentiment Distribution Enhanced,SDE)方法改进现有基于狄利克雷过程混合模型的短文本流聚类算法,以高斯分布建模文本情感,并推导相应的坍缩吉布斯采样算法推断参数。该方法在捕获文本情感特征的同时,能够自动确定聚类簇数量并实现观点聚类。与现有先进方法在Tweets、Google News数据集上的对比实验显示,该文提出的方法在标准化互信息、准确度等指标上取得了超越现有模型的聚类表现,并且在主观性较强的数据集上具有更显著的优势。 展开更多
关键词 观点分析 短文本流聚类 非参数模型 社交媒体
在线阅读 下载PDF
基于多模态上下文融合及语义增强的虚假新闻检测
13
作者 郝秀兰 徐稳静 +1 位作者 魏少华 刘权 中文信息学报 北大核心 2025年第5期140-149,共10页
深度学习算法在虚假新闻检测关键特征提取方面具有优势,然而,现有的基于深度学习的多模态虚假新闻检测方法仍存在不足之处,例如,从输入的图像与文本中提取特征并进行特征融合时存在融合不充分的问题。针对这一问题,该文提出了一种基于... 深度学习算法在虚假新闻检测关键特征提取方面具有优势,然而,现有的基于深度学习的多模态虚假新闻检测方法仍存在不足之处,例如,从输入的图像与文本中提取特征并进行特征融合时存在融合不充分的问题。针对这一问题,该文提出了一种基于多模态上下文融合及语义增强的虚假新闻检测模型MCEFSE(Multimodal Context based Early Fusion and Semantic Enhancement)。首先,该文利用预训练语言模型BERT对句子进行编码。同时,以Swin Transformer模型作为主要框架,在早期视觉特征编码时引入文本特征,增强语义交互。此外,我们还使用InceptionNetV3作为图像模式分析器。最后,对文本语义、视觉语义和图像模式特征进行细化和融合,得到最终的多模态特征表示。结果显示,MCEFSE模型在微博数据集和微博-21数据集上的准确率分别为0.921和0.932,验证了该方法的有效性。 展开更多
关键词 虚假新闻检测 多模态上下文 特征融合 语义增强
在线阅读 下载PDF
两阶段式专利技术问题抽取方法
14
作者 吕学强 刘兆楠 +1 位作者 游新冬 罗艺雄 中文信息学报 北大核心 2025年第1期56-64,78,共10页
专利技术问题阐明了当前专利所在技术主题下存在的具体问题,同时也是当前专利需要解决的问题。专利中已有的摘要虽然实现了对整体专利文本的信息压缩,但部分专利文本的摘要中缺失了对专利技术问题的描述。针对专利技术问题缺失的情况,... 专利技术问题阐明了当前专利所在技术主题下存在的具体问题,同时也是当前专利需要解决的问题。专利中已有的摘要虽然实现了对整体专利文本的信息压缩,但部分专利文本的摘要中缺失了对专利技术问题的描述。针对专利技术问题缺失的情况,该文将专利技术问题挖掘转换为专利技术问题描述句抽取,提出了一种基于BERT的专利技术问题描述句两阶段式抽取方法,从专利说明书中挖掘对应描述专利技术问题的句子集合。第一阶段通过BERT获取专利说明书中各语句的向量表示,进一步通过Sigmoid函数获取各语句评分,筛选出评分高的若干句子作为候选技术问题描述句。第二阶段,取第一阶段抽取的句子集合的子集得到若干候选技术问题描述句集合,通过BERT得到候选句集合与专利说明书的向量表示,使用余弦相似度计算两者之间的语义相似度,语义相似度最高的候选句集合作为技术问题输出。实验结果表明,基于BERT的两阶段式抽取方法Rouge-L达到34.38,且与传统方法相比更加简练。 展开更多
关键词 专利技术问题 句子抽取 神经网络
在线阅读 下载PDF
基于多视角特征融合的多模态虚假新闻检测 被引量:1
15
作者 肖聪 刘璟 +4 位作者 王明文 王菲菲 邵佳兴 黄琪 罗文兵 中文信息学报 北大核心 2025年第4期126-137,共12页
随着社交网络的广泛使用,信息分享变得非常便捷,但这同时也加剧了虚假新闻的传播。现有多模态虚假新闻检测方法在融合文本与图像等多种信息源时,未能充分挖掘和利用新闻内容中不同形式的信息,导致语义信息使用不充分;此外,在融合不同层... 随着社交网络的广泛使用,信息分享变得非常便捷,但这同时也加剧了虚假新闻的传播。现有多模态虚假新闻检测方法在融合文本与图像等多种信息源时,未能充分挖掘和利用新闻内容中不同形式的信息,导致语义信息使用不充分;此外,在融合不同层次结构的语义信息时未能充分考虑不同视角和层次间语义信息的关联性,影响了对新闻内容的深入理解。为此,该文提出了一种多视角特征融合的多模态虚假新闻检测方法,该方法从单模态语义、情感信息和多模态语义等多个视角对新闻内容进行挖掘,并设计了一个语义融合模块,有效整合来自不同视角和层次的语义信息,深入分析信息之间的语义关联性,以达到提升虚假新闻的识别准确性。在Weibo、GossipCop和PolitiFact等公开数据集上的实验结果表明,该文所提方法取得了优异的性能,比基准方法分别提升了1.4%、0.8%和4.6%。 展开更多
关键词 虚假新闻检测 多视角 语义融合 多模态
在线阅读 下载PDF
基于融合特征多重异构网络的微博社交机器人检测方法 被引量:1
16
作者 张怀博 刘晓娜 +3 位作者 刘欣 冯浩源 尹芷仪 沈华伟 中文信息学报 北大核心 2025年第1期133-143,共11页
基于图神经网络的社交机器人检测方法是近年来社交机器人检测领域的研究热点之一,该方法通过刻画社交平台账号的节点特征,并根据账号之间的多种社交网络关系构建异构图神经网络,进而使用图节点分类的方法识别社交机器人。基于异构图神... 基于图神经网络的社交机器人检测方法是近年来社交机器人检测领域的研究热点之一,该方法通过刻画社交平台账号的节点特征,并根据账号之间的多种社交网络关系构建异构图神经网络,进而使用图节点分类的方法识别社交机器人。基于异构图神经网络的方法仍然存在两个方面的问题:一是现有的网络构建方法对传统用户社交关系如粉丝、关注等社交关系数据依赖性比较强,可扩展性比较差;二是现有特征构建方法重点关注社交机器人的个体特征,缺乏对社交机器人群体特征的引入,弱化了对具有相近群体特征的社交机器人的检测能力。基于以上问题,该文提出了融合群体特征的多重异构网络模型MCF-RGCN,该模型引入话题共现网络作为社交关系网络的补充,使模型在不依赖社交关系的情况下也能获得良好的社交机器人检测效果;同时,该文在账号元信息特征、行为特征、内容特征、时序特征、社交网络特征的基础上,引入了社群属性特征增强了账号在群体特征方面的表达,使模型进一步提升了对具有相似群体特征的社交机器人的检测能力。在微博数据集上的实验结果表明,该方法相比目前主流的社交机器人检测方法在F 1值上提升了近2.3%。 展开更多
关键词 社交机器人检测 多重异构图神经网络 社群发现
在线阅读 下载PDF
基于预训练语言模型的IPC与高相似CLC类目自动映射 被引量:1
17
作者 黄敏 魏嘉琴 李茂西 中文信息学报 北大核心 2025年第2期153-161,共9页
专利和图书期刊是产业界与学术界的科技创新信息来源,专利通常采用国际专利分类法(International Patent Classification,IPC)标识,而中文图书期刊则采用中国图书馆分类法(Chinese Library Classification,CLC),不同的分类标识体系给专... 专利和图书期刊是产业界与学术界的科技创新信息来源,专利通常采用国际专利分类法(International Patent Classification,IPC)标识,而中文图书期刊则采用中国图书馆分类法(Chinese Library Classification,CLC),不同的分类标识体系给专利、图书期刊信息整合共享和跨库检索浏览带来了挑战。针对IPC类目和高相似的CLC类目难以准确映射的问题,对于计算资源受限的场景,该文提出结合预训练语言模型BERT和文本蕴含模型ESIM的IPC与CLC类目自动映射方法;对于计算资源充足的场景,该文提出了基于大语言模型ChatGLM2-6B的IPC与CLC类目自动映射方法。在公开的IPC与CLC类目映射数据集和在其基础上构建的IPC类目与高相似的CLC类目映射数据集上的实验结果表明,该文所提出的两种方法均统计显著地优于对比的基线方法,包括当前最先进的Sia-BERT等基于深度神经网络的科技文献类目自动映射方法。消融实验和详细的映射实例分析进一步揭示了该文所提方法的有效性。 展开更多
关键词 国际专利分类法 中国图书馆分类法 预训练语言模型 大语言模型 类目映射
在线阅读 下载PDF
基于正负例思维链的表格-文本混合金融数据自动问答方法
18
作者 李希 刘喜平 +3 位作者 舒晴 谭钊 万常选 刘德喜 中文信息学报 北大核心 2025年第7期102-113,共12页
金融领域表格-文本混合数据的自动问答面临复杂数值推理等挑战。针对这一挑战,该文提出了正负例思维链方法。思维链技术通过选取演示样本,搭配提示指令,能有效提升大语言模型的多步骤推理能力。但思维链的演示样本多为人工制作,费时费力... 金融领域表格-文本混合数据的自动问答面临复杂数值推理等挑战。针对这一挑战,该文提出了正负例思维链方法。思维链技术通过选取演示样本,搭配提示指令,能有效提升大语言模型的多步骤推理能力。但思维链的演示样本多为人工制作,费时费力,且影响大模型推理。受正例和负例对学习效果影响的启发,该文从大模型的推理结果中抽取样本,构建正例样本池和负例样本池。采用静态和动态相结合的策略选取不同类型的演示样本:选择最佳正例能够保障大语言模型输出的准确率,选择相似负例能够指导大语言模型规避错误推理。实验结果显示,该方法在FinQA数据集上的准确率提高了3.6%,在FinQA-fix数据集上的准确率提高了12.73%,显著提升了大模型的数值推理能力。 展开更多
关键词 思维链 正负例 表文混合问答 大语言模型 数值推理
在线阅读 下载PDF
基于知识迁移的情感—原因对抽取
19
作者 赵凤园 刘德喜 +3 位作者 万齐智 刘喜平 廖国琼 万常选 中文信息学报 北大核心 2025年第1期121-132,共12页
现有的情感—原因对抽取模型均没有通过加入外部知识来提升情感—原因对的抽取效果。该文提出基于知识迁移的情感—原因对抽取模型(ECPE-KT),采用知识库获取文本的显性知识编码;随后引入外部情感分类语料库迁移得到子句的隐性知识编码;... 现有的情感—原因对抽取模型均没有通过加入外部知识来提升情感—原因对的抽取效果。该文提出基于知识迁移的情感—原因对抽取模型(ECPE-KT),采用知识库获取文本的显性知识编码;随后引入外部情感分类语料库迁移得到子句的隐性知识编码;最后拼接两个知识编码,加入情感(原因)子句预测概率及相对位置,搭配Transformer机制融合上下文,并采用窗口机制优化计算压力,实现情感—原因对抽取。在ECPE数据集上的实验结果表明,该文提出的方法超过当前最先进的模型ECPE-2D。 展开更多
关键词 情感—原因对抽取 知识辅助 相对位置 预测概率
在线阅读 下载PDF
融合词先验知识的MOOCs课程概念抽取
20
作者 聂凡 刘德喜 +3 位作者 张子靖 刘喜平 廖国琼 万常选 中文信息学报 北大核心 2025年第1期101-111,120,共12页
针对中文大规模开放在线课程(Massive Open Online Courses,MOOCs)视频字幕中课程概念词性丰富、领域特性显著等特点,该文提出一种融合词性、词性规则和词典等词先验知识(Word Prior Knowledge,WPK)的课程概念抽取模型WPK-MCC。该模型... 针对中文大规模开放在线课程(Massive Open Online Courses,MOOCs)视频字幕中课程概念词性丰富、领域特性显著等特点,该文提出一种融合词性、词性规则和词典等词先验知识(Word Prior Knowledge,WPK)的课程概念抽取模型WPK-MCC。该模型首先通过BERT以及字符嵌入的方式获得包含上下文和词性信息的字符表示,再利用词典匹配当前字符所在窗口的字符串,构建当前字符的4个词汇集群(当前字符在词的开头、中间、结尾,以及当前字符单独成词),并通过词性规则控制每个词的贡献权重。此外,考虑到课程概念在MOOCs中有一定的重复性,WPK-MCC模型利用当前句子所在视频字幕的上下文信息,提升课程概念抽取的效果。在MoocData数据集上的实验结果表明,WPK-MCC模型对课程概念实体抽取的F_(1)值达到89.42%,优于SoftLexicon等先进的模型。消融实验显示,词性、规则和词典等词先验知识以及上下文全局信息对WPK-MCC模型的帮助较大,去除词先验知识和上下文全局信息后,WPK-MCC的F_(1)值下降了1.13%。 展开更多
关键词 课程概念抽取 词先验知识 词汇集群 全局信息
在线阅读 下载PDF
上一页 1 2 210 下一页 到第
使用帮助 返回顶部