飞行机动动作识别主要用于飞行员训练质量评估、飞行作战时的辅助决策等场景。为实现基于飞行参数的飞行机机动识别,研究了模式袋(bag of patterns,BoP)算法,针对算法在多维时间序列应用中的不足进行了改进,利用改进后的算法对飞行姿态...飞行机动动作识别主要用于飞行员训练质量评估、飞行作战时的辅助决策等场景。为实现基于飞行参数的飞行机机动识别,研究了模式袋(bag of patterns,BoP)算法,针对算法在多维时间序列应用中的不足进行了改进,利用改进后的算法对飞行姿态数据进行特征提取,并进行飞行机动识别分析。识别仿真结果表明,改进后的BoP算法能提高飞行机动识别的准确率和置信度,通过该算法提取的飞行参数特征能更好地表征具体的飞行机动动作。展开更多
The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operatin...The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability.展开更多
文摘飞行机动动作识别主要用于飞行员训练质量评估、飞行作战时的辅助决策等场景。为实现基于飞行参数的飞行机机动识别,研究了模式袋(bag of patterns,BoP)算法,针对算法在多维时间序列应用中的不足进行了改进,利用改进后的算法对飞行姿态数据进行特征提取,并进行飞行机动识别分析。识别仿真结果表明,改进后的BoP算法能提高飞行机动识别的准确率和置信度,通过该算法提取的飞行参数特征能更好地表征具体的飞行机动动作。
基金supported by Southern Marine Science and Engineering Guangdong Laboratory Grant No.SML2023SP229。
文摘The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability.