岩石-混凝土界面是工程结构的薄弱环节,对结构整体的强度和稳定性有重要影响。为反映岩-混界面天然粗糙状态,基于内聚力模型(cohesive zone model,简称CZM),建立了具有随机生成粗糙界面的岩石-混凝土复合巴西圆盘试件数值模型,通过不同...岩石-混凝土界面是工程结构的薄弱环节,对结构整体的强度和稳定性有重要影响。为反映岩-混界面天然粗糙状态,基于内聚力模型(cohesive zone model,简称CZM),建立了具有随机生成粗糙界面的岩石-混凝土复合巴西圆盘试件数值模型,通过不同加载角度下的巴西劈裂物理试验验证了该方法的可靠性,并探究了界面粗糙度、加载角度对试件峰值荷载和破坏特征的影响。结果表明:不同加载角度下,试件存在3种典型破坏模式:界面黏结破坏、复合破坏、双材料拉伸开裂破坏;加载角度对试件力学行为的影响以70°为界,加载角度小于70°时影响显著,大于70°后影响不显著;界面粗糙度的影响随加载角度的不同有较大差异,当加载角度在15°~65°范围内,提高界面粗糙度可显著提高试件峰值荷载,增强岩-混结构的承载能力;界面处应力状态的差异决定了试件破坏模式的不同,但粗糙的界面可以增强混凝土与岩石之间的黏结和互锁效应,对试件破坏模式产生影响。研究结果将加深对岩石-混凝土界面破坏机制的认识,对工程建设具有指导意义。展开更多
冻融过程岩石孔隙内未冻水含量变化是影响其力学特性的关键因素之一。以砂岩为研究对象,采用低场核磁共振系统(nuclear magnetic resonance,NMR)对岩石冻融过程(20、0、-2、-4、-6、-10、-15、-10、-6、-4、-2、0、20℃)孔隙水含量进行...冻融过程岩石孔隙内未冻水含量变化是影响其力学特性的关键因素之一。以砂岩为研究对象,采用低场核磁共振系统(nuclear magnetic resonance,NMR)对岩石冻融过程(20、0、-2、-4、-6、-10、-15、-10、-6、-4、-2、0、20℃)孔隙水含量进行监测,分析未冻水含量随温度的演化规律,并探讨岩石冻融过程未冻水含量演化对其力学特性的影响。研究结果表明:(1)冻融过程岩石中孔隙水受温度影响显著,共经过5个阶段,即过冷段、快速冻结阶段、缓慢冻结阶段、缓慢融化阶段和融化加速阶段。(2)岩石在解冻过程中有明显的滞后现象。在相同温度下,岩样冻结过程未冻水含量明显高于解冻过程。与之对应,解冻过程的峰值强度和弹性模量相对于冻结阶段显著提高。(3)冻融过程的单轴抗压强度以及岩石弹性模量与未冻水含量的关系可由指数函数表示。冻结初期,岩石力学参数的变化主要受孔隙冰含量的增长及孔隙冰对岩石颗粒的胶结作用影响,随温度进一步降低,吸附水膜厚度下降,吸附能力增强,使孔隙冰与对岩石颗粒之间的整体性增强,岩石力学参数进一步发生改变。展开更多
文摘岩石-混凝土界面是工程结构的薄弱环节,对结构整体的强度和稳定性有重要影响。为反映岩-混界面天然粗糙状态,基于内聚力模型(cohesive zone model,简称CZM),建立了具有随机生成粗糙界面的岩石-混凝土复合巴西圆盘试件数值模型,通过不同加载角度下的巴西劈裂物理试验验证了该方法的可靠性,并探究了界面粗糙度、加载角度对试件峰值荷载和破坏特征的影响。结果表明:不同加载角度下,试件存在3种典型破坏模式:界面黏结破坏、复合破坏、双材料拉伸开裂破坏;加载角度对试件力学行为的影响以70°为界,加载角度小于70°时影响显著,大于70°后影响不显著;界面粗糙度的影响随加载角度的不同有较大差异,当加载角度在15°~65°范围内,提高界面粗糙度可显著提高试件峰值荷载,增强岩-混结构的承载能力;界面处应力状态的差异决定了试件破坏模式的不同,但粗糙的界面可以增强混凝土与岩石之间的黏结和互锁效应,对试件破坏模式产生影响。研究结果将加深对岩石-混凝土界面破坏机制的认识,对工程建设具有指导意义。
文摘冻融过程岩石孔隙内未冻水含量变化是影响其力学特性的关键因素之一。以砂岩为研究对象,采用低场核磁共振系统(nuclear magnetic resonance,NMR)对岩石冻融过程(20、0、-2、-4、-6、-10、-15、-10、-6、-4、-2、0、20℃)孔隙水含量进行监测,分析未冻水含量随温度的演化规律,并探讨岩石冻融过程未冻水含量演化对其力学特性的影响。研究结果表明:(1)冻融过程岩石中孔隙水受温度影响显著,共经过5个阶段,即过冷段、快速冻结阶段、缓慢冻结阶段、缓慢融化阶段和融化加速阶段。(2)岩石在解冻过程中有明显的滞后现象。在相同温度下,岩样冻结过程未冻水含量明显高于解冻过程。与之对应,解冻过程的峰值强度和弹性模量相对于冻结阶段显著提高。(3)冻融过程的单轴抗压强度以及岩石弹性模量与未冻水含量的关系可由指数函数表示。冻结初期,岩石力学参数的变化主要受孔隙冰含量的增长及孔隙冰对岩石颗粒的胶结作用影响,随温度进一步降低,吸附水膜厚度下降,吸附能力增强,使孔隙冰与对岩石颗粒之间的整体性增强,岩石力学参数进一步发生改变。