精细的田块数据是现代农业的重要基础资料,该研究针对从高分辨率遥感影像中提取田块精细数据的需求,建立了一种先验知识融合语义特征的冬小麦田块精细提取方法(prior knowledge and semantic features integration-based farmland parce...精细的田块数据是现代农业的重要基础资料,该研究针对从高分辨率遥感影像中提取田块精细数据的需求,建立了一种先验知识融合语义特征的冬小麦田块精细提取方法(prior knowledge and semantic features integration-based farmland parcel extraction methodology,PKFFPE),PKFFPE以遥感图像和相应的边缘图像作为输入,采用编码器-解码器结构进行特征提取,利用多尺度注意力模块捕获不同尺度的关键特征,使用SoftMax对图像进行初步分割;通过深入分析同一田块内颜色、纹理等特征的分布规律获取先验知识,利用先验知识建立后处理方法,对初分割结果进行优化,生成田块精细数据。选择河北省邯郸市馆陶县和山东省泰安市宁阳县作为试验区,用于验证PKFFPE方法在平原地区和丘陵地区的适用性;选择UNet、ErfNet、SegNet、EIGNet,以及面向对象分类的方法作为初分割的对比方法,选择条件随机场和形态学处理作为的后处理的对比方法开展对比试验。试验结果表明,PKFFPE方法在馆陶县、宁阳县结果的准确率(96.1%、93.2%)、精确率(90.6%、87.6%)、召回率(93.2%、90.6%)、和F1分数(91.9%,89.0%)均优于对比方法,证明了PKFFPE方法在从高分辨遥感影像中提取田块精细数据方面具有突出的优势,能够应用于科研和生产实践。展开更多
低秩稀疏分解方法因其好的检测性能在红外小目标检测领域受到广泛关注。然而,现有低秩稀疏分解方法在复杂场景中仍然面临检测性能不高、检测速度较慢等问题。虽然现有的低秩塔克分解方法在复杂场景下取得了令人满意的检测性能,但其需依...低秩稀疏分解方法因其好的检测性能在红外小目标检测领域受到广泛关注。然而,现有低秩稀疏分解方法在复杂场景中仍然面临检测性能不高、检测速度较慢等问题。虽然现有的低秩塔克分解方法在复杂场景下取得了令人满意的检测性能,但其需依赖经验预先定义秩:若秩估计过大或过小,会导致漏检或虚警。而且,不同场景中秩的大小不一样,限制了实际应用。为了解决这一问题,本文采用非凸秩接近范数约束低秩塔克分解的潜在因子,无需手动设置秩,从而显著提升了算法在不同场景中的鲁棒性。进一步地,设计了基于对称高斯-赛德尔的交替方向乘子法(symmetric GaussSeidel based alternating direction method of multipliers algorithm,sGSADMM)来求解所提模型。与现有基于交替方向乘子法相比,sGSADMM算法通过利用更多结构信息,实现了更高的求解精度。大量实验表明,所提方法在检测性能和背景抑制等方面均优于现有的先进算法。展开更多
文摘精细的田块数据是现代农业的重要基础资料,该研究针对从高分辨率遥感影像中提取田块精细数据的需求,建立了一种先验知识融合语义特征的冬小麦田块精细提取方法(prior knowledge and semantic features integration-based farmland parcel extraction methodology,PKFFPE),PKFFPE以遥感图像和相应的边缘图像作为输入,采用编码器-解码器结构进行特征提取,利用多尺度注意力模块捕获不同尺度的关键特征,使用SoftMax对图像进行初步分割;通过深入分析同一田块内颜色、纹理等特征的分布规律获取先验知识,利用先验知识建立后处理方法,对初分割结果进行优化,生成田块精细数据。选择河北省邯郸市馆陶县和山东省泰安市宁阳县作为试验区,用于验证PKFFPE方法在平原地区和丘陵地区的适用性;选择UNet、ErfNet、SegNet、EIGNet,以及面向对象分类的方法作为初分割的对比方法,选择条件随机场和形态学处理作为的后处理的对比方法开展对比试验。试验结果表明,PKFFPE方法在馆陶县、宁阳县结果的准确率(96.1%、93.2%)、精确率(90.6%、87.6%)、召回率(93.2%、90.6%)、和F1分数(91.9%,89.0%)均优于对比方法,证明了PKFFPE方法在从高分辨遥感影像中提取田块精细数据方面具有突出的优势,能够应用于科研和生产实践。
文摘低秩稀疏分解方法因其好的检测性能在红外小目标检测领域受到广泛关注。然而,现有低秩稀疏分解方法在复杂场景中仍然面临检测性能不高、检测速度较慢等问题。虽然现有的低秩塔克分解方法在复杂场景下取得了令人满意的检测性能,但其需依赖经验预先定义秩:若秩估计过大或过小,会导致漏检或虚警。而且,不同场景中秩的大小不一样,限制了实际应用。为了解决这一问题,本文采用非凸秩接近范数约束低秩塔克分解的潜在因子,无需手动设置秩,从而显著提升了算法在不同场景中的鲁棒性。进一步地,设计了基于对称高斯-赛德尔的交替方向乘子法(symmetric GaussSeidel based alternating direction method of multipliers algorithm,sGSADMM)来求解所提模型。与现有基于交替方向乘子法相比,sGSADMM算法通过利用更多结构信息,实现了更高的求解精度。大量实验表明,所提方法在检测性能和背景抑制等方面均优于现有的先进算法。