针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题,提出一种综合运用多项技术的跨尺度YOLOv7(cross-scale YOLOv7,CSYOLOv7)网络。首先,设计跨阶段特征提取模块(cross-stage feature extraction mod...针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题,提出一种综合运用多项技术的跨尺度YOLOv7(cross-scale YOLOv7,CSYOLOv7)网络。首先,设计跨阶段特征提取模块(cross-stage feature extraction module,CFEM)和感受野特征增强模块(receptive field feature enhancement module,RFFEM)。CFEM提高模型细化特征提取能力并抑制浅层下采样过程中特征的丢失,RFFEM加大网络对深层语义特征的提取力度,增强模型对目标上下文信息获取能力。其次,设计跨梯度空间金字塔池化模块(cross-gradient space pyramid pool module,CSPPM)有效融合微小目标多尺度的全局和局部特征。最后,用形状感知交并比(shape-aware intersection over union,Shape IoU)替换完全交并比(complete intersection over union,CIoU),提高模型在边界框定位任务中的精确度。实验结果表明,CSYOLOv7网络在DIOR(dataset for image object recognition)数据集和NWPU VHR-10(Northwestern Polytechnical University Very High Resolution-10)数据集上分别取得了74%和89.6%的检测精度,有效提升遥感图像微小目标的检测效果。展开更多
文摘针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题,提出一种综合运用多项技术的跨尺度YOLOv7(cross-scale YOLOv7,CSYOLOv7)网络。首先,设计跨阶段特征提取模块(cross-stage feature extraction module,CFEM)和感受野特征增强模块(receptive field feature enhancement module,RFFEM)。CFEM提高模型细化特征提取能力并抑制浅层下采样过程中特征的丢失,RFFEM加大网络对深层语义特征的提取力度,增强模型对目标上下文信息获取能力。其次,设计跨梯度空间金字塔池化模块(cross-gradient space pyramid pool module,CSPPM)有效融合微小目标多尺度的全局和局部特征。最后,用形状感知交并比(shape-aware intersection over union,Shape IoU)替换完全交并比(complete intersection over union,CIoU),提高模型在边界框定位任务中的精确度。实验结果表明,CSYOLOv7网络在DIOR(dataset for image object recognition)数据集和NWPU VHR-10(Northwestern Polytechnical University Very High Resolution-10)数据集上分别取得了74%和89.6%的检测精度,有效提升遥感图像微小目标的检测效果。
文摘点云分类与分割在机器人导航、虚拟现实以及自动驾驶领域应用广泛,大多面向点云处理的深度学习方法采用共享权重的多层感知机(MultiLayer Perceptron,MLP)以及单一的池化来聚合点云的局部特征,难以准确地描述排列复杂的点云结构信息。针对上述问题,提出一种点云形状自适应的局部特征编码方法,以有效表征形状多样的点云结构信息,提升点云分类和分割性能。该方法首先引入一种自适应特征增强模块,采用差分和可学习的调节因子对特征进行增强,弥补共享权重MLP描述能力不足的问题。在此基础上,设计了一种特征聚合模块,利用点云的绝对空间距离赋予不同点不同权重以适应形状多变的点云结构信息,突出有代表性的点集,更加准确地描述点云的局部结构信息。在3个大型公开点云数据集上进行实验,结果表明,在ModelNet40数据集上取得了93.9%的总体实例分类精度,在分割数据集ShapeNet和S3dis上分别取得了85.9%,59.7%的总体实例平均交并比(mean Intersection over Union,mIoU),本文提出的方法在点云分类和分割任务上表现优秀。