为了提高图像识别性能,采用孪生支持向量机用于图像分类识别,并结合二维Gabor小波对图像纹理特征进行提取,借助局部线性嵌入(Locally linear embedding,LLE)降维,以进一步提高图像识别准确率和识别效率。采用二维Gabor小波对图像数据进...为了提高图像识别性能,采用孪生支持向量机用于图像分类识别,并结合二维Gabor小波对图像纹理特征进行提取,借助局部线性嵌入(Locally linear embedding,LLE)降维,以进一步提高图像识别准确率和识别效率。采用二维Gabor小波对图像数据进行有效滤波,获得图像关键纹理特征,然后对大量纹理特征进行LLE降维,以降低维度过高带来的运算量巨大问题,采用孪生支持向量机(Twin support vector machine,TWSVM)对关键纹理特征进行分类,获得图像分类结果并完成图像识别。实验证明,Gabor+LLE+TWSVM方法对图像识别的适用度高,相比常用图像识别算法,通过合理设置二维Gabor小波的尺度和方向参数,并借助LLE有效降维,运用孪生支持向量机可以获得更高的图像识别准确率。展开更多
文摘为了提高图像识别性能,采用孪生支持向量机用于图像分类识别,并结合二维Gabor小波对图像纹理特征进行提取,借助局部线性嵌入(Locally linear embedding,LLE)降维,以进一步提高图像识别准确率和识别效率。采用二维Gabor小波对图像数据进行有效滤波,获得图像关键纹理特征,然后对大量纹理特征进行LLE降维,以降低维度过高带来的运算量巨大问题,采用孪生支持向量机(Twin support vector machine,TWSVM)对关键纹理特征进行分类,获得图像分类结果并完成图像识别。实验证明,Gabor+LLE+TWSVM方法对图像识别的适用度高,相比常用图像识别算法,通过合理设置二维Gabor小波的尺度和方向参数,并借助LLE有效降维,运用孪生支持向量机可以获得更高的图像识别准确率。