轨迹跟踪是无人驾驶控制系统中至关重要的功能之一。车辆动力学模型对轨迹跟踪性能有显著影响,但是存在模型复杂度和求解效率之间的矛盾,在非线性工况下无法满足轨迹跟踪精度要求,为此提出基于高斯过程回归(Gaussian Process Regression...轨迹跟踪是无人驾驶控制系统中至关重要的功能之一。车辆动力学模型对轨迹跟踪性能有显著影响,但是存在模型复杂度和求解效率之间的矛盾,在非线性工况下无法满足轨迹跟踪精度要求,为此提出基于高斯过程回归(Gaussian Process Regression,GPR)的模型预测控制(Model Predictive Control,MPC)方法。使用简单模型从而确保求解效率,通过GPR对车辆模型补偿从而提高轨迹跟踪性能。提出基于单轨动力学模型的车辆状态融合估计方法,获得GPR误差补偿模型;构建轨迹跟踪问题模型,推导GPR误差补偿模型在预测时域的迭代方程,对预测时域内的车辆状态进行动态补偿,实现轨迹跟踪控制;通过搭建实车验证平台开展典型工况试验验证,与无补偿MPC方法进行对比。研究结果表明,新方法轨迹跟踪精度得到明显提升,轨迹跟踪横向误差和航向误差分别降低了33.3%和27.9%,同时还兼顾了车辆舒适性的提升,侧向加速度和横摆角速度均值分别下降了17.1%和21.7%。展开更多
文摘轨迹跟踪是无人驾驶控制系统中至关重要的功能之一。车辆动力学模型对轨迹跟踪性能有显著影响,但是存在模型复杂度和求解效率之间的矛盾,在非线性工况下无法满足轨迹跟踪精度要求,为此提出基于高斯过程回归(Gaussian Process Regression,GPR)的模型预测控制(Model Predictive Control,MPC)方法。使用简单模型从而确保求解效率,通过GPR对车辆模型补偿从而提高轨迹跟踪性能。提出基于单轨动力学模型的车辆状态融合估计方法,获得GPR误差补偿模型;构建轨迹跟踪问题模型,推导GPR误差补偿模型在预测时域的迭代方程,对预测时域内的车辆状态进行动态补偿,实现轨迹跟踪控制;通过搭建实车验证平台开展典型工况试验验证,与无补偿MPC方法进行对比。研究结果表明,新方法轨迹跟踪精度得到明显提升,轨迹跟踪横向误差和航向误差分别降低了33.3%和27.9%,同时还兼顾了车辆舒适性的提升,侧向加速度和横摆角速度均值分别下降了17.1%和21.7%。