期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进Res-UNet网络的织物瑕疵图像识别方法 被引量:3
1
作者 于光许 张富宇 《毛纺科技》 CAS 北大核心 2024年第7期100-106,共7页
复杂花色织物的纹理和色彩常常是非规则的,导致织物表面瑕疵识别难度较高。针对上述问题,研究一种基于改进Res-UNet网络的织物表面瑕疵图像识别方法。采集织物图像并对其实施灰度化、去噪以及直方图均衡化处理,利用蝙蝠算法求取最佳提... 复杂花色织物的纹理和色彩常常是非规则的,导致织物表面瑕疵识别难度较高。针对上述问题,研究一种基于改进Res-UNet网络的织物表面瑕疵图像识别方法。采集织物图像并对其实施灰度化、去噪以及直方图均衡化处理,利用蝙蝠算法求取最佳提取网络层数,通过增加特征提取网络层数改进Res-UNet网络,利用改进后的Res-UNet网络识别织物表面瑕疵,并且采用迁移学习算法进一步优化识别模型的参数,实现织物表面瑕疵准确识别。结果表明:本文方法应用下,无论是素色样本,还是花色样本,其识别系数均达到0.9以上,相比基于标签嵌入方法的织物瑕疵识别方法和双路高分辨率转换网络的布匹瑕疵检测方法,本文方法对复杂花色样本的轮廓系数识别更高,适用性更好,识别能力更强。 展开更多
关键词 改进Res-UNet网络 织物表面瑕疵 图像采集 预处理 图像识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部