提出了一种Transformer与图网络相结合的网络模型,用于对视觉传感器采集到的视频图像进行三维人体姿态估计。Transformer能够有效地从二维关键关节点中提取时空维度高相关性特征,而图网络则能够感知细节相关性特征,通过融合这两种网络结...提出了一种Transformer与图网络相结合的网络模型,用于对视觉传感器采集到的视频图像进行三维人体姿态估计。Transformer能够有效地从二维关键关节点中提取时空维度高相关性特征,而图网络则能够感知细节相关性特征,通过融合这两种网络结构,提高了三维姿态估计的精度。在公开数据集Human3.6M上进行了仿真实验,验证了Transformer与图卷积融合算法的性能。实验结果显示,最终估计得到的三维人体关节点的平均关节点位置偏差(Mean Per Joint Position Error,MPJPE)为38.4 mm,相较于现有方法有一定提升,表明该方法具有较强的应用价值,可应用于许多下游相关工作中。展开更多
文摘提出了一种Transformer与图网络相结合的网络模型,用于对视觉传感器采集到的视频图像进行三维人体姿态估计。Transformer能够有效地从二维关键关节点中提取时空维度高相关性特征,而图网络则能够感知细节相关性特征,通过融合这两种网络结构,提高了三维姿态估计的精度。在公开数据集Human3.6M上进行了仿真实验,验证了Transformer与图卷积融合算法的性能。实验结果显示,最终估计得到的三维人体关节点的平均关节点位置偏差(Mean Per Joint Position Error,MPJPE)为38.4 mm,相较于现有方法有一定提升,表明该方法具有较强的应用价值,可应用于许多下游相关工作中。