为解决由于无人机视角下毛竹林的形状和纹理复杂,现有方法在分割精度和鲁棒性方面表现不佳的问题,提出了一种应用跨领域适应和偏移量引导的毛竹林分割网络——BFSNet。以百山祖国家公园为试验区,利用无人机拍摄周边毛竹林图像构建数据...为解决由于无人机视角下毛竹林的形状和纹理复杂,现有方法在分割精度和鲁棒性方面表现不佳的问题,提出了一种应用跨领域适应和偏移量引导的毛竹林分割网络——BFSNet。以百山祖国家公园为试验区,利用无人机拍摄周边毛竹林图像构建数据集。为增强模型的特征提取能力,提出跨领域适应模块以有效利用源模型的强特征提取能力,并结合自主学习提取适用于毛竹林分割任务的特征,利用两者的优势进行互补。为提高模型对于不同形状毛竹林的识别和定位能力,结合可变形卷积的偏移量引导模块,引入可学习的偏移量参数,以适应不同形状的毛竹林目标。将BFSNet在DeepGlobe Land Cover Classification Challenge和自制数据集上进行模型训练和测试,并与多种主流图像分割方法进行对比。结果表明:BFSNet在交并比、Dice系数、精确率和召回率4项指标上均取得了最优的性能表现,分别获得了76.04%和71.93%的交并比。与多种主流的图像分割模型相比,BFSNet在毛竹林的分割效果方面表现最为出色,对毛竹林形状的精确建模能力能够有效地应对不同形态的毛竹林。展开更多
森林冠层的三维重建研究能够更加直观反映森林空间结构,提高森林参数的测量精度。目前小光斑激光雷达已经广泛应用于林业研究中。为建立落叶松树冠三维形状模型,以长春净月潭实验区落叶松机载LiDAR(LiDAR,Light Detection And Ranging)...森林冠层的三维重建研究能够更加直观反映森林空间结构,提高森林参数的测量精度。目前小光斑激光雷达已经广泛应用于林业研究中。为建立落叶松树冠三维形状模型,以长春净月潭实验区落叶松机载LiDAR(LiDAR,Light Detection And Ranging)数据为基础,采用K-means算法提取建模参数。该算法以单木树冠顶点作为初始聚类中心,经过4次迭代估测出单木树高和单木树冠直径,通过与试验区的单木实测数据对比,进行相关性分析,得到估测树高和估测树冠与实测数据相关系数分别为0.892 4和0.769 0,经过验证,估测树高和估测树冠的精度为94.06%和82.21%。利用激光雷达提取出的单木坐标、树高、树冠和冠基高采用旋转抛物线方法重建森林尺度三维模型呈现森林结构。展开更多
文摘为解决由于无人机视角下毛竹林的形状和纹理复杂,现有方法在分割精度和鲁棒性方面表现不佳的问题,提出了一种应用跨领域适应和偏移量引导的毛竹林分割网络——BFSNet。以百山祖国家公园为试验区,利用无人机拍摄周边毛竹林图像构建数据集。为增强模型的特征提取能力,提出跨领域适应模块以有效利用源模型的强特征提取能力,并结合自主学习提取适用于毛竹林分割任务的特征,利用两者的优势进行互补。为提高模型对于不同形状毛竹林的识别和定位能力,结合可变形卷积的偏移量引导模块,引入可学习的偏移量参数,以适应不同形状的毛竹林目标。将BFSNet在DeepGlobe Land Cover Classification Challenge和自制数据集上进行模型训练和测试,并与多种主流图像分割方法进行对比。结果表明:BFSNet在交并比、Dice系数、精确率和召回率4项指标上均取得了最优的性能表现,分别获得了76.04%和71.93%的交并比。与多种主流的图像分割模型相比,BFSNet在毛竹林的分割效果方面表现最为出色,对毛竹林形状的精确建模能力能够有效地应对不同形态的毛竹林。