本文采用特征线方法和激波装配法,对磁流体中间激波在行星际空间的演化过程进行数值模拟。主要结论如下:(1) 2→4型中间激波通过向下游发出后向慢压缩波使下游态磁场减幅,通过向上游发出前向快压缩波使上游态磁场增幅,以致2→4型中间激...本文采用特征线方法和激波装配法,对磁流体中间激波在行星际空间的演化过程进行数值模拟。主要结论如下:(1) 2→4型中间激波通过向下游发出后向慢压缩波使下游态磁场减幅,通过向上游发出前向快压缩波使上游态磁场增幅,以致2→4型中间激波迅速经导灭激波向慢激波转化;所发出的前向快压缩波经非线性变陡形成快激波。(2)1→3型中间激波首先通过向下游发出前向慢稀疏波而很快变成1→3=4型临界中间激波,并瞬间转变为由前向快激波和前向2→4型中间激波构成的激波系统。其中,2→4型中间激波可在其前导快激波的下游传播较远的距离,有可能为 IAU 附近的飞船观测到,但最终导灭激波转变为慢激波。展开更多
During the past two years(2016–2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but...During the past two years(2016–2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but not limited to the following topics: solar corona; solar wind and turbulence; filament/prominence and jets; solar flare; radio bursts; particle acceleration at coronal shocks; magnetic flux ropes; instability;instrument; Coronal Mass Ejections(CMEs) and their interplanetary counterparts; Magnetohydrodynamic(MHD) numerical modeling; solar energetic particles and cosmic rays. The progress further improves our understanding of the eruptions of solar activities, their evolutions and propagations in the heliosphere, and final geoeffects on our Earth. These results were achieved by the Chinese solar and space scientists independently or via international collaborations. This paper will give a brief review of these achievements.展开更多
文摘本文采用特征线方法和激波装配法,对磁流体中间激波在行星际空间的演化过程进行数值模拟。主要结论如下:(1) 2→4型中间激波通过向下游发出后向慢压缩波使下游态磁场减幅,通过向上游发出前向快压缩波使上游态磁场增幅,以致2→4型中间激波迅速经导灭激波向慢激波转化;所发出的前向快压缩波经非线性变陡形成快激波。(2)1→3型中间激波首先通过向下游发出前向慢稀疏波而很快变成1→3=4型临界中间激波,并瞬间转变为由前向快激波和前向2→4型中间激波构成的激波系统。其中,2→4型中间激波可在其前导快激波的下游传播较远的距离,有可能为 IAU 附近的飞船观测到,但最终导灭激波转变为慢激波。
文摘During the past two years(2016–2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but not limited to the following topics: solar corona; solar wind and turbulence; filament/prominence and jets; solar flare; radio bursts; particle acceleration at coronal shocks; magnetic flux ropes; instability;instrument; Coronal Mass Ejections(CMEs) and their interplanetary counterparts; Magnetohydrodynamic(MHD) numerical modeling; solar energetic particles and cosmic rays. The progress further improves our understanding of the eruptions of solar activities, their evolutions and propagations in the heliosphere, and final geoeffects on our Earth. These results were achieved by the Chinese solar and space scientists independently or via international collaborations. This paper will give a brief review of these achievements.