用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)∥ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究α-Ala在SWBNNT(9,9)与水复合环境的手性转变。分子结构计算表明:反应物S型α-Ala和中间体INT1在SWBNNT(9,9)与水复合环境,与单体相比,氢转移断的...用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)∥ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究α-Ala在SWBNNT(9,9)与水复合环境的手性转变。分子结构计算表明:反应物S型α-Ala和中间体INT1在SWBNNT(9,9)与水复合环境,与单体相比,氢转移断的O-H和C-H键都略长,H与其要转移到的目标原子O的距离均短很多。反应通道研究发现:在SWBNNT(9,9)与水复合环境下,α-Ala手性转变有4条路径,每条路径上氢转移都能以1个或2个水分子为媒介实现。势能面计算发现:手性转变反应的最高能垒来自H从手性C向羰基O转移的过渡态;在氨基先异构接着羧基H转移和H从手性C向羰基O转移顺次实现的路径,并以2H2O为氢转移媒介时最高能垒被降到最小值153.8 k J·mol-1。比只在SWBNNT(9,9)内的302.7 k J·mol-1明显降低,比只在水环境的167.8 k J·mol-1也有所降低。结果表明:SWBNNT(9,9)与水复合环境,对α-Ala手性转变有较好的催化作用。展开更多
基于密度泛函理论的第一性原理方法,通过计算表面能确定La Fe O_3(010)表面为最稳定的吸附表面,研究了H_2分子在La Fe O_3(010)表面的吸附性质。La Fe O_3(010)表面存在La O和Fe O_2两种终止表面,但吸附主要发生在Fe O_2终止表面,由于La...基于密度泛函理论的第一性原理方法,通过计算表面能确定La Fe O_3(010)表面为最稳定的吸附表面,研究了H_2分子在La Fe O_3(010)表面的吸附性质。La Fe O_3(010)表面存在La O和Fe O_2两种终止表面,但吸附主要发生在Fe O_2终止表面,由于La Fe O_3(010)表面弛豫的影响,使得凹凸不平的表面层增加了表面原子与H原子的接触面积,表面晶胞的纵向体积增加约2.5%,有利于H原子向晶体内扩散。研究发现,H_2分子在La Fe O_3(010)表面主要存在3种化学吸附方式:第一种吸附发生在O-O桥位,2个H原子分别吸附在2个O原子上,形成2个-OH基,这是最佳吸附位置,此时H原子与表面O原子的作用主要是H1s与O_2p轨道杂化作用的结果,H-O之间为典型的共价键。H_2分子的解离能垒为1.542 e V,说明表面需要一定的热条件,H_2分子才会发生解离吸附;第二种吸附发生在Fe-O桥位,1个H原子吸附在O原子上形成1个-OH基,另一个H原子吸附在Fe原子上形成金属键;第三种吸附发生在O顶位,2个H原子吸附在同一个O原子上,形成H_2O分子,此时H_2O分子与表面形成物理吸附,H_2O分子逃离表面后容易形成氧空位。此外,H_2分子在La Fe O_3(010)表面还可以发生物理吸附。展开更多
文摘用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)∥ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究α-Ala在SWBNNT(9,9)与水复合环境的手性转变。分子结构计算表明:反应物S型α-Ala和中间体INT1在SWBNNT(9,9)与水复合环境,与单体相比,氢转移断的O-H和C-H键都略长,H与其要转移到的目标原子O的距离均短很多。反应通道研究发现:在SWBNNT(9,9)与水复合环境下,α-Ala手性转变有4条路径,每条路径上氢转移都能以1个或2个水分子为媒介实现。势能面计算发现:手性转变反应的最高能垒来自H从手性C向羰基O转移的过渡态;在氨基先异构接着羧基H转移和H从手性C向羰基O转移顺次实现的路径,并以2H2O为氢转移媒介时最高能垒被降到最小值153.8 k J·mol-1。比只在SWBNNT(9,9)内的302.7 k J·mol-1明显降低,比只在水环境的167.8 k J·mol-1也有所降低。结果表明:SWBNNT(9,9)与水复合环境,对α-Ala手性转变有较好的催化作用。
基金supported by the Annual Key Scientific Research Foundations of Anhui Province,China(08020203005,07020203003)Major Scientific and Technological Project of Anhui Province,China(08010202124)~~
文摘基于密度泛函理论的第一性原理方法,通过计算表面能确定La Fe O_3(010)表面为最稳定的吸附表面,研究了H_2分子在La Fe O_3(010)表面的吸附性质。La Fe O_3(010)表面存在La O和Fe O_2两种终止表面,但吸附主要发生在Fe O_2终止表面,由于La Fe O_3(010)表面弛豫的影响,使得凹凸不平的表面层增加了表面原子与H原子的接触面积,表面晶胞的纵向体积增加约2.5%,有利于H原子向晶体内扩散。研究发现,H_2分子在La Fe O_3(010)表面主要存在3种化学吸附方式:第一种吸附发生在O-O桥位,2个H原子分别吸附在2个O原子上,形成2个-OH基,这是最佳吸附位置,此时H原子与表面O原子的作用主要是H1s与O_2p轨道杂化作用的结果,H-O之间为典型的共价键。H_2分子的解离能垒为1.542 e V,说明表面需要一定的热条件,H_2分子才会发生解离吸附;第二种吸附发生在Fe-O桥位,1个H原子吸附在O原子上形成1个-OH基,另一个H原子吸附在Fe原子上形成金属键;第三种吸附发生在O顶位,2个H原子吸附在同一个O原子上,形成H_2O分子,此时H_2O分子与表面形成物理吸附,H_2O分子逃离表面后容易形成氧空位。此外,H_2分子在La Fe O_3(010)表面还可以发生物理吸附。