针对当前主流增强现实显示设备中的光学组合器存在的光效低,或系统复杂,或不便携带等问题,提出了直投式视网膜投影增强现实近眼显示光学系统的设计方案。光学系统自像面至物面之间依次包括视网膜投影透镜、平行光像源和补偿透镜组三个...针对当前主流增强现实显示设备中的光学组合器存在的光效低,或系统复杂,或不便携带等问题,提出了直投式视网膜投影增强现实近眼显示光学系统的设计方案。光学系统自像面至物面之间依次包括视网膜投影透镜、平行光像源和补偿透镜组三个部分。在仿真过程中,使用玻璃平板替代平行光像源,视网膜投影透镜选择双胶合透镜作为初始结构进行仿真和优化,在设计和仿真补偿透镜组时引入偶次非球面进行设计,同时仿真过程中使用人眼模型进行辅助优化,以模拟实际应用情况。最后,光学系统中的平行光像源使用激光光源及相关光学器件,并使用几何透镜搭建了该光学系统的实物样机以验证系统的显示效果。经过仿真和优化,所设计的光学系统工作在486~656 nm波段,对平行的像源光线进行成像时,点列图均方根(Root Mean Square,RMS)半径为9.59μm,在截止频率处的调制传递函数(Modulation Transfer Function,MTF)大于0.8;加入补偿透镜组后,整个系统对环境光成像时,在0°、3.75°和7.5°的三个半视场的点列图RMS半径分别为3.28μm、4.44μm和5.36μm,且全视场在截止频率处的MTF大于0.6,所设计的光学系统对显示像源和环境光的功率衰减分别在10%以下及30%以下。该系统可实现视网膜投影成像同时对环境光进行补偿,所搭建的样机可实现增强现实显示效果,系统有好的成像质量、高光效和结构简单等优点。展开更多
面向机载探测系统大视场光学成像的需求,开展了大视场光学成像系统光学设计、自由曲面光学元件超精密加工、形位误差同步检测以及系统集成与成像实验研究。首先,采用视场扩展法进行大视场自由曲面离轴反射光学系统的设计;其次,进行铝合...面向机载探测系统大视场光学成像的需求,开展了大视场光学成像系统光学设计、自由曲面光学元件超精密加工、形位误差同步检测以及系统集成与成像实验研究。首先,采用视场扩展法进行大视场自由曲面离轴反射光学系统的设计;其次,进行铝合金自由曲面反射镜纳米精度加工和高频抑制工艺探索,并实现了基于计算全息元件的自由曲面形位高精度检测;最后,进行了光学系统的装调集成与成像实验。结果表明,系统的视场角为30°×5°,全视场光学传递函数值大于0.7,接近衍射极限,最大像元均方根半径为2.075μm,自由曲面光学元件的面形精度均方根(Root Mean Square,RMS)值优于20 nm,位置精度优于1μm,装配集成后能够满足大视场高分辨的场景使用要求,同时具备稳定可靠和快响制造等特点。展开更多
文摘针对当前主流增强现实显示设备中的光学组合器存在的光效低,或系统复杂,或不便携带等问题,提出了直投式视网膜投影增强现实近眼显示光学系统的设计方案。光学系统自像面至物面之间依次包括视网膜投影透镜、平行光像源和补偿透镜组三个部分。在仿真过程中,使用玻璃平板替代平行光像源,视网膜投影透镜选择双胶合透镜作为初始结构进行仿真和优化,在设计和仿真补偿透镜组时引入偶次非球面进行设计,同时仿真过程中使用人眼模型进行辅助优化,以模拟实际应用情况。最后,光学系统中的平行光像源使用激光光源及相关光学器件,并使用几何透镜搭建了该光学系统的实物样机以验证系统的显示效果。经过仿真和优化,所设计的光学系统工作在486~656 nm波段,对平行的像源光线进行成像时,点列图均方根(Root Mean Square,RMS)半径为9.59μm,在截止频率处的调制传递函数(Modulation Transfer Function,MTF)大于0.8;加入补偿透镜组后,整个系统对环境光成像时,在0°、3.75°和7.5°的三个半视场的点列图RMS半径分别为3.28μm、4.44μm和5.36μm,且全视场在截止频率处的MTF大于0.6,所设计的光学系统对显示像源和环境光的功率衰减分别在10%以下及30%以下。该系统可实现视网膜投影成像同时对环境光进行补偿,所搭建的样机可实现增强现实显示效果,系统有好的成像质量、高光效和结构简单等优点。
文摘面向机载探测系统大视场光学成像的需求,开展了大视场光学成像系统光学设计、自由曲面光学元件超精密加工、形位误差同步检测以及系统集成与成像实验研究。首先,采用视场扩展法进行大视场自由曲面离轴反射光学系统的设计;其次,进行铝合金自由曲面反射镜纳米精度加工和高频抑制工艺探索,并实现了基于计算全息元件的自由曲面形位高精度检测;最后,进行了光学系统的装调集成与成像实验。结果表明,系统的视场角为30°×5°,全视场光学传递函数值大于0.7,接近衍射极限,最大像元均方根半径为2.075μm,自由曲面光学元件的面形精度均方根(Root Mean Square,RMS)值优于20 nm,位置精度优于1μm,装配集成后能够满足大视场高分辨的场景使用要求,同时具备稳定可靠和快响制造等特点。