The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure t...The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.展开更多
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten...Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.展开更多
To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparat...To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes.Furthermore,the pH of the solvent system was found to significantly influence the probe's behavior.Under highly acidic conditions(pH≤2),DHU‑NP‑4 exhibited exceptional specificity for Fe^(3+),while in alkaline conditions,it demonstrated high specificity for Cu^(2+).Leveraging these properties,the probe enabled the quantitative detection of Fe^(3+)and Cu^(2+)in solution.展开更多
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to...Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.展开更多
The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste g...The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.展开更多
The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process th...The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process that leads to a significant deterioration of non-uniformity when scaling up to larger areas.Since the performance of gaseous detectors is highly dependent on the choice of working gas,optimizing the gas mixture offers a promising solution to improve the uniformity performance.This paper addresses these challenges through a combined approach of simulation based on Garfield++and experimental studies.The simulation investigates the properties of different mixing fractions of gas mixtures and their impact on detector performance,including gain uniformity and time resolution.To verify the simulation results,experimental tests were conducted using a multi-channel PICOSEC MM prototype with different gas mixtures.The experimental results are consistent with the findings of the simulation,indicating that a higher concentration of neon significantly improves the detector’s gain uniformity.Furthermore,the influence of gas mixtures on time resolution was explored as a critical performance indicator.The study presented in this paper offers valuable insights for improving uniformity in large-area PICOSEC MM detectors and optimizing overall performance.展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,t...Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices.展开更多
This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc...This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.展开更多
This study investigates the potential of metal additives in acrylonitrile butadiene styrene(ABS)polymer fuel to enhance hybrid rocket motor(HRM)performance through computational analysis,Chemical Equilibrium with Appl...This study investigates the potential of metal additives in acrylonitrile butadiene styrene(ABS)polymer fuel to enhance hybrid rocket motor(HRM)performance through computational analysis,Chemical Equilibrium with Applications(CEA),software.ABS was selected as the base fuel due to its thermoplastic nature,which allows for the creation of complex fuel geometries through 3D printing,offering significant flexibility in fuel design.Hybrid rockets,which combine a solid fuel with a liquid oxidiser,offer advantages in terms of operational simplicity and safety.However,conventional polymer fuels often exhibit low regression rates and suboptimal combustion efficiencies.In this research,we evaluated a range of metal additives-aluminium(Al),boron(B),nickel(Ni),copper(Cu),and iron(Fe)-at chamber pressures ranging from 1 to 30 bar and oxidiser-to-fuel(O/F)ratios between 1.1 and 12,resulting in 1800 unique test conditions.The main performance parameters used to assess each formulation were characteristic velocity(C^(*))and adiabatic flame temperature.The results revealed that each test produced a different optimum O/F ratio,with most ratios falling between 4 and 6.The highest performance was achieved at a chamber pressure of 30 bar across all formulations.Among the additives,Al and B demonstrated significant potential for improved combustion performance with increasing metal loadings.In contrast,Fe,Cu,and Ni reached optimal performance at a minimum loading of 1%.Future work includes investigating B-Al metal composites as additives into the ABS base polymer fuel,and doing experimental validation tests where the metallised ABS polymer fuel is 3D printed.展开更多
In this paper,we establish common fixed point theorems for expansive map?pings on b-metric-like space and coincidence point for f-weakly isotone increasing mappings in partially ordered b-metric-like space.The main re...In this paper,we establish common fixed point theorems for expansive map?pings on b-metric-like space and coincidence point for f-weakly isotone increasing mappings in partially ordered b-metric-like space.The main results generalize and extend several well-known comparable results from the existing literature.Moreover,some examples are provided to illustrate the main results.展开更多
The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively red...The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones.展开更多
Cs_(x)WO_(3)/TiO_(2) composites with full-spectrum catalytic activity were prepared by solvothermal reaction.The composites were characterized using X-ray diffraction(XRD)analysis,scanning electron microscopy(SEM),tra...Cs_(x)WO_(3)/TiO_(2) composites with full-spectrum catalytic activity were prepared by solvothermal reaction.The composites were characterized using X-ray diffraction(XRD)analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),specific surface area testing,X-ray photoelectron spectroscopy(XPS),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).Cs_(x)WO_(3) and TiO_(2) were uniformly bonded together in the compos-ites.The heterojunction structure was formed.The band gap was reduced from 2.75 to 2.65 eV.The photocatalytic property of Cs_(x)WO_(3)/TiO_(2)was demonstrated by the degradation rates of 20 mg·L^(-1) methylene blue dye,which were 99.7%,91.4%,and 70.7%under irradiation from a 300 W high-pressure mercury lamp,a 500 W xenon lamp,and a 400 W infrared lamp,respectively.After five cycles of photocatalytic degradation,the composite photocatalyst still showed a degradation efficiency of 87.6%.This indicates that Cs_(x)WO_(3)/TiO_(2) has good photocatalytic degradability and cyclic stability.The photocatalytic mechanism of Cs_(x)WO_(3)/TiO_(2)was investigated.The trapping experiments of the active species showed that the main active substances were the empty hole(h+)and hydroxyl radical(·OH).展开更多
Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the...Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the composite material is the key to strengthen its electrochemical characteristics.Herein,based on the high specific surface area and abundant surface functional groups of carbon dots(CDs),sodium titanate precursors containing CDs were in situ prepared by one-step hydrothermal method.After the thermal conversion of the precursors,a composite material(NNTO/C)of Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)was obtained,containing conductive carbon derived from CDs.The introduc⁃tion of conductive carbon not only adjusts the composition ratio of the mixed phases,but also provides a small charge transfer impedance(Rct,7.48Ω)and a big specific surface area(100.8 m^(2)/g).As a result,NNTO/C composites exhibit better sodium storage behavior while playing the synergistic interaction of mixed phases.When employed as the anode,after 200 cycles at 0.05 A/g,NNTO/C still maintains a specific capacity of 143.8 mA‧h/g.After 400 cycles at 1.00 A/g,the specific capacity remains as high as 108 mA‧h/g.This study suggests an innovative thinking for designing two-phase structures of electrode materials and the greater use of CDs in electrochemical energy storage.展开更多
Four new coordination polymers,{[Cd(mbtx)(4OHphCOO)]NO_(3)}n(1),{[Zn(mbtx)(1,4-bdc)_(0.5)(H_(2)O)_(2)]·(1,4-bdc)_(0.5)·4H_(2)O}n(2),{[Cd2(mbtx)(5NO_(2)-bdc)_(2)(H_(2)O)_(3)]·4.5H_(2)O}n(3),and{[Zn(H_(2)...Four new coordination polymers,{[Cd(mbtx)(4OHphCOO)]NO_(3)}n(1),{[Zn(mbtx)(1,4-bdc)_(0.5)(H_(2)O)_(2)]·(1,4-bdc)_(0.5)·4H_(2)O}n(2),{[Cd2(mbtx)(5NO_(2)-bdc)_(2)(H_(2)O)_(3)]·4.5H_(2)O}n(3),and{[Zn(H_(2)O)6][Zn_(2)(mbtx)_(2)(btc)_(2)(H_(2)O)_(4)]·2H_(2)O}n(4)(mbtx=1,3-bis(4H-1,2,4-triazole)benzene,4OHphCOO-=p-hydroxybenzoate,1,4-bdc2-=1,4-benzenedicarboxylate,5NO_(2)-bdc2-=5-nitro-isophthalate,btc3-=1,3,5-benzenetricarboxylate),were synthesized under room temperature condition and characterized by single-crystal X-ray diffraction,elemental analyses,and powder X-ray diffraction.Single-crystal X-ray structural analysis shows that complexes 1 and 3 are 2D networks.In 1,the adjacent 2D networks are linked to a 3D network byπ-πstacking interaction.2 and 4 exhibit 1D chains,and the 1D chains are connected into a 3D network byπ-πstacking interaction and intermolecular hydrogen bond.Luminescence and thermogravimetric analysis of the four complexes were discussed.CCDC:2416406,1;2416407,2;2416408,3;2416409,4.展开更多
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia,has funded this project under Grant No.(KEP-PhD:72-130-1443).
文摘The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.
基金This work was supported by the National Key R&D Program of China(2022YFB4102000 and 2022YFA1505100)the NSFC(22472038)the Shanghai Science and Technology Innovation Action Plan(22dz1205500).
文摘Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.
文摘To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes.Furthermore,the pH of the solvent system was found to significantly influence the probe's behavior.Under highly acidic conditions(pH≤2),DHU‑NP‑4 exhibited exceptional specificity for Fe^(3+),while in alkaline conditions,it demonstrated high specificity for Cu^(2+).Leveraging these properties,the probe enabled the quantitative detection of Fe^(3+)and Cu^(2+)in solution.
基金supported by the National Natural Science Foundation of China(Grant Nos.52475166,52175148)the Regional Collaboration Project of Shanxi Province(Grant No.202204041101044).
文摘Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.
基金supported by the National Natural Science Foundation of China(22178295,21706225)Natural Science Foundation of Hunan Province(2025JJ50085)Hunan Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.
文摘The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.
基金supported by the National Natural Science Foundation of China(12125505).
文摘The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process that leads to a significant deterioration of non-uniformity when scaling up to larger areas.Since the performance of gaseous detectors is highly dependent on the choice of working gas,optimizing the gas mixture offers a promising solution to improve the uniformity performance.This paper addresses these challenges through a combined approach of simulation based on Garfield++and experimental studies.The simulation investigates the properties of different mixing fractions of gas mixtures and their impact on detector performance,including gain uniformity and time resolution.To verify the simulation results,experimental tests were conducted using a multi-channel PICOSEC MM prototype with different gas mixtures.The experimental results are consistent with the findings of the simulation,indicating that a higher concentration of neon significantly improves the detector’s gain uniformity.Furthermore,the influence of gas mixtures on time resolution was explored as a critical performance indicator.The study presented in this paper offers valuable insights for improving uniformity in large-area PICOSEC MM detectors and optimizing overall performance.
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
基金Supported by Jilin Provincial Scientific and Technological Development Program(20230508109RC,20230201051GX,20220201091GX)National Natural Science Foundation of China(62035013,61275235)。
文摘Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices.
基金Project(52276068)supported by the National Natural Science Foundation of China。
文摘This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.
文摘This study investigates the potential of metal additives in acrylonitrile butadiene styrene(ABS)polymer fuel to enhance hybrid rocket motor(HRM)performance through computational analysis,Chemical Equilibrium with Applications(CEA),software.ABS was selected as the base fuel due to its thermoplastic nature,which allows for the creation of complex fuel geometries through 3D printing,offering significant flexibility in fuel design.Hybrid rockets,which combine a solid fuel with a liquid oxidiser,offer advantages in terms of operational simplicity and safety.However,conventional polymer fuels often exhibit low regression rates and suboptimal combustion efficiencies.In this research,we evaluated a range of metal additives-aluminium(Al),boron(B),nickel(Ni),copper(Cu),and iron(Fe)-at chamber pressures ranging from 1 to 30 bar and oxidiser-to-fuel(O/F)ratios between 1.1 and 12,resulting in 1800 unique test conditions.The main performance parameters used to assess each formulation were characteristic velocity(C^(*))and adiabatic flame temperature.The results revealed that each test produced a different optimum O/F ratio,with most ratios falling between 4 and 6.The highest performance was achieved at a chamber pressure of 30 bar across all formulations.Among the additives,Al and B demonstrated significant potential for improved combustion performance with increasing metal loadings.In contrast,Fe,Cu,and Ni reached optimal performance at a minimum loading of 1%.Future work includes investigating B-Al metal composites as additives into the ABS base polymer fuel,and doing experimental validation tests where the metallised ABS polymer fuel is 3D printed.
基金Supported by the National Natural Science Foundation of China(12001249)the Natural Science Foundation of Jiangxi Province(20232BAB211004)the Educational Commission Science Programm of Jiangxi Province(GJJ2200523)。
文摘In this paper,we establish common fixed point theorems for expansive map?pings on b-metric-like space and coincidence point for f-weakly isotone increasing mappings in partially ordered b-metric-like space.The main results generalize and extend several well-known comparable results from the existing literature.Moreover,some examples are provided to illustrate the main results.
文摘The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones.
文摘Cs_(x)WO_(3)/TiO_(2) composites with full-spectrum catalytic activity were prepared by solvothermal reaction.The composites were characterized using X-ray diffraction(XRD)analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),specific surface area testing,X-ray photoelectron spectroscopy(XPS),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).Cs_(x)WO_(3) and TiO_(2) were uniformly bonded together in the compos-ites.The heterojunction structure was formed.The band gap was reduced from 2.75 to 2.65 eV.The photocatalytic property of Cs_(x)WO_(3)/TiO_(2)was demonstrated by the degradation rates of 20 mg·L^(-1) methylene blue dye,which were 99.7%,91.4%,and 70.7%under irradiation from a 300 W high-pressure mercury lamp,a 500 W xenon lamp,and a 400 W infrared lamp,respectively.After five cycles of photocatalytic degradation,the composite photocatalyst still showed a degradation efficiency of 87.6%.This indicates that Cs_(x)WO_(3)/TiO_(2) has good photocatalytic degradability and cyclic stability.The photocatalytic mechanism of Cs_(x)WO_(3)/TiO_(2)was investigated.The trapping experiments of the active species showed that the main active substances were the empty hole(h+)and hydroxyl radical(·OH).
文摘Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the composite material is the key to strengthen its electrochemical characteristics.Herein,based on the high specific surface area and abundant surface functional groups of carbon dots(CDs),sodium titanate precursors containing CDs were in situ prepared by one-step hydrothermal method.After the thermal conversion of the precursors,a composite material(NNTO/C)of Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)was obtained,containing conductive carbon derived from CDs.The introduc⁃tion of conductive carbon not only adjusts the composition ratio of the mixed phases,but also provides a small charge transfer impedance(Rct,7.48Ω)and a big specific surface area(100.8 m^(2)/g).As a result,NNTO/C composites exhibit better sodium storage behavior while playing the synergistic interaction of mixed phases.When employed as the anode,after 200 cycles at 0.05 A/g,NNTO/C still maintains a specific capacity of 143.8 mA‧h/g.After 400 cycles at 1.00 A/g,the specific capacity remains as high as 108 mA‧h/g.This study suggests an innovative thinking for designing two-phase structures of electrode materials and the greater use of CDs in electrochemical energy storage.
文摘Four new coordination polymers,{[Cd(mbtx)(4OHphCOO)]NO_(3)}n(1),{[Zn(mbtx)(1,4-bdc)_(0.5)(H_(2)O)_(2)]·(1,4-bdc)_(0.5)·4H_(2)O}n(2),{[Cd2(mbtx)(5NO_(2)-bdc)_(2)(H_(2)O)_(3)]·4.5H_(2)O}n(3),and{[Zn(H_(2)O)6][Zn_(2)(mbtx)_(2)(btc)_(2)(H_(2)O)_(4)]·2H_(2)O}n(4)(mbtx=1,3-bis(4H-1,2,4-triazole)benzene,4OHphCOO-=p-hydroxybenzoate,1,4-bdc2-=1,4-benzenedicarboxylate,5NO_(2)-bdc2-=5-nitro-isophthalate,btc3-=1,3,5-benzenetricarboxylate),were synthesized under room temperature condition and characterized by single-crystal X-ray diffraction,elemental analyses,and powder X-ray diffraction.Single-crystal X-ray structural analysis shows that complexes 1 and 3 are 2D networks.In 1,the adjacent 2D networks are linked to a 3D network byπ-πstacking interaction.2 and 4 exhibit 1D chains,and the 1D chains are connected into a 3D network byπ-πstacking interaction and intermolecular hydrogen bond.Luminescence and thermogravimetric analysis of the four complexes were discussed.CCDC:2416406,1;2416407,2;2416408,3;2416409,4.