The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it wi...The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.展开更多
This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block co...This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block code share the propertyof linear correlation, the existing linear correlation-basedidentification method is invalid for this case. This drawback can becircumvented by introducing a novel multi-fractal spectrum-basedmethod. Simulation results show that the new method has highrobustness and under the same conditions of bit error, the lowerthe code rate, the higher the recognition rate. Thus, the methodhas significant potential for future application in engineering.展开更多
基金supported by the National Natural Science Foundation of China(6190149661871385)。
文摘The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.
基金supported by the National Natural Science Foundation of China(61171170) the Natural Science Foundation of Anhui Province(1408085QF115)
文摘This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block code share the propertyof linear correlation, the existing linear correlation-basedidentification method is invalid for this case. This drawback can becircumvented by introducing a novel multi-fractal spectrum-basedmethod. Simulation results show that the new method has highrobustness and under the same conditions of bit error, the lowerthe code rate, the higher the recognition rate. Thus, the methodhas significant potential for future application in engineering.