With more than 30 years of development,laser-induced fluorescence(LIF)is becoming an increasingly common diagnostic to measure ion and neutral velocity distribution functions in different fields of studies in plasma s...With more than 30 years of development,laser-induced fluorescence(LIF)is becoming an increasingly common diagnostic to measure ion and neutral velocity distribution functions in different fields of studies in plasma science including Hall thrusters,linear devices,plasma processing,and basic plasma physical processes.In this paper,technical methods used in the LIF diagnostic,including modulation,collection optics,and wavelength calibration techniques are reviewed in detail.A few basic physical processes along with applications and future development associated with the LIF diagnostics are also reviewed.展开更多
A helicon wave plasma source in a tube of ring permanent magnets(PMs)has been constructed to study the effect of the conflguration of the magnetic fleld with zero magnetic points on plasma parameters.This device also ...A helicon wave plasma source in a tube of ring permanent magnets(PMs)has been constructed to study the effect of the conflguration of the magnetic fleld with zero magnetic points on plasma parameters.This device also serves as an exploration platform for a simple,compact helicon wave plasma source adaptable to engineering applications.A small-diameter(26 mm)highdensity(~10^(18)m^(-3))blue core plasma is produced in~1 Pa argon by helicon RF(radiofrequency)discharge using a NagoyaⅢantenna under magnetic fleld(~2 k G)of compact ring PMs(length~204 mm).Operational parameters,i.e.RF power and neutral gas pressure are scanned and plasma density is measured by an RF compensated probe to explore the operating characteristics of the device.Iconic feature of a helicon discharge,such as blue core plasmas and E-H-W mode transitions are well observed in the device,despite the wavelength calculated using the conventional dispersion relation of a bounded whistler waves(Chen 1991 Plasma Phys.Control.Fusion 33339)is order of magnitudes longer than the length of the plasma in this device which seems to suggest that such helicon device is impossible.Surprisingly,the wavelength calculated by the unbounded whistle wave dispersion formula in turn suggests the occurrence of a half wavelength resonance.展开更多
Limited particle transit time is one of several limiting factors which determine the maximum temporal resolution of a Langmuir probe.In this work,we have revisited the known fast sweep Langmuir probe techniques in a u...Limited particle transit time is one of several limiting factors which determine the maximum temporal resolution of a Langmuir probe.In this work,we have revisited the known fast sweep Langmuir probe techniques in a uniform,quiescent multi-dipole confined hot cathode discharge with two operation scenarios:one in which the probe sweeping frequency fsweepis much lower than the ion plasma frequency fpi,another one where fsweepis much greater than fpi,respectively.This allows investigation into the effect of limited ion-motion on I–V traces.Serious distortions of I–V traces at high frequencies,previously claimed to be an ion-motion limitation effect,were not found unless shunt resistance is sufficiently high,despite a f;/f;ratio of~3.On the other hand,evidences of sheath capacitance on the I–V traces have been observed.Distortions of I–V traces qualitatively agree with predictions of sheath capacitance response to the sweeping voltage.Additionally,techniques in fast sweep Langmuir probe are briefly discussed.The comparison between the high-speed dual Langmuir probe(HDLP)and the single probe setup shows that the capacitive response can be removed via subtracting a leakage current for the single probe setup almost as effectively as using the HDLP setup,but the HDLP setup does remain advantageous in its facilitation of better recovery of weak current signal commonly in low density plasma.展开更多
An algorithm for automated fitting of the effective electron temperature from a planar Langmuir probe I-V trace taken in a plasma with multiple Maxwellian electron populations is developed through MATLAB coding.The co...An algorithm for automated fitting of the effective electron temperature from a planar Langmuir probe I-V trace taken in a plasma with multiple Maxwellian electron populations is developed through MATLAB coding.The code automatically finds a fitting range suitable for analyzing the temperatures of each of the electron populations.The algorithm is used to analyzeⅠ-Ⅴtraces from both the Institute of Plasma Physics Chinese Academy of Sciences's Diagnostic Test Source device and a similar multi-dipole chamber at the University of Wisconsin-Madison.Ⅰ-Ⅴtraces reconstructed from the parameters fitted by the algorithm not only agree with the measured I-V trace but also reveal physical properties consistent with those found in previous studies.Cylindrical probe traces are also analyzed with the algorithm and it is shown that the major source of error in such attempts is the disruption of the inflection point due to both decreased signal-to-noise ratio and greater sheath expansion.It is thus recommended to use planar probes with radii much greater than the plasma Debye length when signal-to-noise ratio is poor.展开更多
In this article,the effect of the finite conductive surface area of a satellite on the use of satellite-based Langmuir probes is reviewed in light of the basic theory of asymmetric double Langmuir probes(ADLPs).Recent...In this article,the effect of the finite conductive surface area of a satellite on the use of satellite-based Langmuir probes is reviewed in light of the basic theory of asymmetric double Langmuir probes(ADLPs).Recent theoretical and experimental studies have discussed electron sheath/presheath formation and the electron Bohm criterion along with their implications for satellite-based Langmuir probes.The effects predicted by the latest theory of the electron Bohm criterion were not experimentally observed and the experimental results remain supportive of a critical area ratio(A_(L)/A_(S))_(crit)=(m_(i)/(2.3m_(e)))^(1/2)between the probe area A_(S)and the satellite area A_L as conventionally believed.A satellite-based Langmuir probe must satisfy this criterion to physically act as a single Langmuir probe.However,experimental investigations also found that high-energy electrons adversely affect(A_(L)/A_(S))_(crit)and a Langmuir probe's signal quality by giving additional electron current to A_(L).Based on these results,a number of limitations of the maximum probe area are derived when designing satellite-based Langmuir probes,with consideration of both the aim of the satellite and the plasma where the satellite-based probe works.These proposed measures are expected to only partially alleviate the effect of the inadequate satellite surface area on the application of satellite-based Langmuir probes.Using a larger satellite to carry a Langmuir probe remains the most viable means to obtain precise space plasma parameters.展开更多
基金supported by National Natural Science Foundation of China(No.11875285)。
文摘With more than 30 years of development,laser-induced fluorescence(LIF)is becoming an increasingly common diagnostic to measure ion and neutral velocity distribution functions in different fields of studies in plasma science including Hall thrusters,linear devices,plasma processing,and basic plasma physical processes.In this paper,technical methods used in the LIF diagnostic,including modulation,collection optics,and wavelength calibration techniques are reviewed in detail.A few basic physical processes along with applications and future development associated with the LIF diagnostics are also reviewed.
基金supported by National Natural Science Foundation of China(No.U19A20113)。
文摘A helicon wave plasma source in a tube of ring permanent magnets(PMs)has been constructed to study the effect of the conflguration of the magnetic fleld with zero magnetic points on plasma parameters.This device also serves as an exploration platform for a simple,compact helicon wave plasma source adaptable to engineering applications.A small-diameter(26 mm)highdensity(~10^(18)m^(-3))blue core plasma is produced in~1 Pa argon by helicon RF(radiofrequency)discharge using a NagoyaⅢantenna under magnetic fleld(~2 k G)of compact ring PMs(length~204 mm).Operational parameters,i.e.RF power and neutral gas pressure are scanned and plasma density is measured by an RF compensated probe to explore the operating characteristics of the device.Iconic feature of a helicon discharge,such as blue core plasmas and E-H-W mode transitions are well observed in the device,despite the wavelength calculated using the conventional dispersion relation of a bounded whistler waves(Chen 1991 Plasma Phys.Control.Fusion 33339)is order of magnitudes longer than the length of the plasma in this device which seems to suggest that such helicon device is impossible.Surprisingly,the wavelength calculated by the unbounded whistle wave dispersion formula in turn suggests the occurrence of a half wavelength resonance.
基金supported by National Natural Science Foundation of China(No.11875285)the CAS Key Research Program of Frontier Sciences(No.QYZDB-SSWSLH001)the Chinese Academy of Science Hundred Youth Talent Program。
文摘Limited particle transit time is one of several limiting factors which determine the maximum temporal resolution of a Langmuir probe.In this work,we have revisited the known fast sweep Langmuir probe techniques in a uniform,quiescent multi-dipole confined hot cathode discharge with two operation scenarios:one in which the probe sweeping frequency fsweepis much lower than the ion plasma frequency fpi,another one where fsweepis much greater than fpi,respectively.This allows investigation into the effect of limited ion-motion on I–V traces.Serious distortions of I–V traces at high frequencies,previously claimed to be an ion-motion limitation effect,were not found unless shunt resistance is sufficiently high,despite a f;/f;ratio of~3.On the other hand,evidences of sheath capacitance on the I–V traces have been observed.Distortions of I–V traces qualitatively agree with predictions of sheath capacitance response to the sweeping voltage.Additionally,techniques in fast sweep Langmuir probe are briefly discussed.The comparison between the high-speed dual Langmuir probe(HDLP)and the single probe setup shows that the capacitive response can be removed via subtracting a leakage current for the single probe setup almost as effectively as using the HDLP setup,but the HDLP setup does remain advantageous in its facilitation of better recovery of weak current signal commonly in low density plasma.
基金This work is supported by the Chinese Academy of Science Hundred Youth Talent Program Start-up Funding,CAS Key Research Program of Frontier Sciences(No.QYZDB-SSW-SLH001)National Natural Science Foundation of China(Nos.11875285,11575248 and 11505220)well as US National Science Foundation Award(No.1804654).
文摘An algorithm for automated fitting of the effective electron temperature from a planar Langmuir probe I-V trace taken in a plasma with multiple Maxwellian electron populations is developed through MATLAB coding.The code automatically finds a fitting range suitable for analyzing the temperatures of each of the electron populations.The algorithm is used to analyzeⅠ-Ⅴtraces from both the Institute of Plasma Physics Chinese Academy of Sciences's Diagnostic Test Source device and a similar multi-dipole chamber at the University of Wisconsin-Madison.Ⅰ-Ⅴtraces reconstructed from the parameters fitted by the algorithm not only agree with the measured I-V trace but also reveal physical properties consistent with those found in previous studies.Cylindrical probe traces are also analyzed with the algorithm and it is shown that the major source of error in such attempts is the disruption of the inflection point due to both decreased signal-to-noise ratio and greater sheath expansion.It is thus recommended to use planar probes with radii much greater than the plasma Debye length when signal-to-noise ratio is poor.
基金supported by National Natural Science Foundation of China(Nos.12275305 and 12205334)the Chinese Academy of Science Hundred Youth Talent Program+1 种基金China Postdoctoral Science Foundation(No.2022M713188)the Director’s Fund of Hefei Institutes of Physical Science,Chinese Academy of Sciences(No.YZJJ2022QN19)。
文摘In this article,the effect of the finite conductive surface area of a satellite on the use of satellite-based Langmuir probes is reviewed in light of the basic theory of asymmetric double Langmuir probes(ADLPs).Recent theoretical and experimental studies have discussed electron sheath/presheath formation and the electron Bohm criterion along with their implications for satellite-based Langmuir probes.The effects predicted by the latest theory of the electron Bohm criterion were not experimentally observed and the experimental results remain supportive of a critical area ratio(A_(L)/A_(S))_(crit)=(m_(i)/(2.3m_(e)))^(1/2)between the probe area A_(S)and the satellite area A_L as conventionally believed.A satellite-based Langmuir probe must satisfy this criterion to physically act as a single Langmuir probe.However,experimental investigations also found that high-energy electrons adversely affect(A_(L)/A_(S))_(crit)and a Langmuir probe's signal quality by giving additional electron current to A_(L).Based on these results,a number of limitations of the maximum probe area are derived when designing satellite-based Langmuir probes,with consideration of both the aim of the satellite and the plasma where the satellite-based probe works.These proposed measures are expected to only partially alleviate the effect of the inadequate satellite surface area on the application of satellite-based Langmuir probes.Using a larger satellite to carry a Langmuir probe remains the most viable means to obtain precise space plasma parameters.