From the perspective of state-channel interaction,standard quantum teleportation can be viewed as a communication process characterized by both input and output,functioning as a quantum depolarizing channel.To achieve...From the perspective of state-channel interaction,standard quantum teleportation can be viewed as a communication process characterized by both input and output,functioning as a quantum depolarizing channel.To achieve a precise quantification of the quantumness introduced by this channel,we examine its uncertainties,which encompass both statedependent and state-independent uncertainties.Specifically,for qudit systems,we provide general formulas for these uncertainties.We analyze the uncertainties associated with standard quantum teleportation when induced by isotropic states,Werner states,and X-states,and we elucidate the correlation between these uncertainties and the parameters of the specific mixed states.Our findings demonstrate the validity of quantifying these uncertainties.展开更多
The rattling mode,an anharmonic vibrational phonon,is widely recognized as a critical factor in the emergence of superconductivity in caged materials.Here,we present a counterexample in a filled-skutterudite supercond...The rattling mode,an anharmonic vibrational phonon,is widely recognized as a critical factor in the emergence of superconductivity in caged materials.Here,we present a counterexample in a filled-skutterudite superconductor Ba_(x)Ir_(4)Sb_(12)(x=0.8,0.9,1.0),synthesized via a high-pressure route.Transport measurements down to liquid 3He temperatures reveal a transition temperature(T_(c))of 1.2 K and an upper critical field(H_(c2))of 1.3 T.Unlike other superconductors with caged structures,the Ba_(x)Ir_(4)Sb_(12)(X=P,As,Sb)family exhibits a monotonic decreasing T_(c) with the enhancement of the rattling mode,as indicated by fitting the Bloch–Grüneisen formula.Theoretical analysis suggests that electron doping from Ba transforms the direct bandgap IrSb3 into a metal,with the Fermi surface dominated by the hybridization of Ir 5d and Sb 5p orbitals.Our findings of decoupled rattling modes and superconductivity distinguish the Ba_(x)Ir_(4)Sb_(12) family from other caged superconductors,warranting further exploration into the underlying mechanism.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12201300).
文摘From the perspective of state-channel interaction,standard quantum teleportation can be viewed as a communication process characterized by both input and output,functioning as a quantum depolarizing channel.To achieve a precise quantification of the quantumness introduced by this channel,we examine its uncertainties,which encompass both statedependent and state-independent uncertainties.Specifically,for qudit systems,we provide general formulas for these uncertainties.We analyze the uncertainties associated with standard quantum teleportation when induced by isotropic states,Werner states,and X-states,and we elucidate the correlation between these uncertainties and the parameters of the specific mixed states.Our findings demonstrate the validity of quantifying these uncertainties.
基金supported by Beijing Natural Science Foundation (Grant No.Z200005)the National Key Research and Development Program of China (Grant No.2021YFA1401800)the National Natural Science Foundation of China (Grant Nos.52272267 and 52202342)。
文摘The rattling mode,an anharmonic vibrational phonon,is widely recognized as a critical factor in the emergence of superconductivity in caged materials.Here,we present a counterexample in a filled-skutterudite superconductor Ba_(x)Ir_(4)Sb_(12)(x=0.8,0.9,1.0),synthesized via a high-pressure route.Transport measurements down to liquid 3He temperatures reveal a transition temperature(T_(c))of 1.2 K and an upper critical field(H_(c2))of 1.3 T.Unlike other superconductors with caged structures,the Ba_(x)Ir_(4)Sb_(12)(X=P,As,Sb)family exhibits a monotonic decreasing T_(c) with the enhancement of the rattling mode,as indicated by fitting the Bloch–Grüneisen formula.Theoretical analysis suggests that electron doping from Ba transforms the direct bandgap IrSb3 into a metal,with the Fermi surface dominated by the hybridization of Ir 5d and Sb 5p orbitals.Our findings of decoupled rattling modes and superconductivity distinguish the Ba_(x)Ir_(4)Sb_(12) family from other caged superconductors,warranting further exploration into the underlying mechanism.