An adaptive approach to select analysis window param- eters for linear frequency modulated (LFM) signals is proposed to obtain the optimal 3 dB signal-to-noise ratio (SNR) in the short- time Fourier transform (S...An adaptive approach to select analysis window param- eters for linear frequency modulated (LFM) signals is proposed to obtain the optimal 3 dB signal-to-noise ratio (SNR) in the short- time Fourier transform (STFT) domain. After analyzing the instan- taneous frequency and instantaneous bandwidth to deduce the relation between the window length and deviation of the Gaus- sian window, high-order statistics is used to select the appropriate window length for STFT and get the optimal SNR with the right time-frequency resolution according to the signal characteristic under a fixed sampling rate. Computer simulations have verified the effectiveness of the new method.展开更多
Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly...Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly,a buffer structure was designed to attenuate the pyroshock generated by the pyrotechnic device.Secondly,the mechanical properties of aluminum honeycomb at different temperatures were obtained through quasi-static compression experiments.Then,the internal ballistic responses of the launcher were gained by the closed bomb tests and the equivalent classical interior ballistic model.Finally,the recoil performance of the launcher with aluminum honeycomb buffer at different temperatures was studied.It is revealed that the aluminum honeycomb crushing force gradually decreases with the temperature increases.The peak pressure,burning rate coefficient and velocity increase while the peak time decreases with the temperature increase for the interior ballistics.For the launcher recoil responses,the average launch recoil decreases if the aluminum honeycomb doesn't enter the dense stage.The impact acceleration,projectile velocity and displacement increase as the temperature increase.The paper spotlights the temperature's influence on the recoil characteristics of the aluminum honeycomb buffer,which provides a new idea for buffering technology of pyrotechnic devices in a complex space environment.展开更多
基金supported by the National Natural Science Foundation of China(6107313361175053+8 种基金6127236960975019)the Heilongjiang Postdoctoral Grant(LRB08362)the Fundamental Research Funds for the Central Universities of China(2011QN0272011QN1262012QN0302011ZD010)the Science and Technology Planning Project of Dalian City(2011A17GX0732010E15SF153)
文摘An adaptive approach to select analysis window param- eters for linear frequency modulated (LFM) signals is proposed to obtain the optimal 3 dB signal-to-noise ratio (SNR) in the short- time Fourier transform (STFT) domain. After analyzing the instan- taneous frequency and instantaneous bandwidth to deduce the relation between the window length and deviation of the Gaus- sian window, high-order statistics is used to select the appropriate window length for STFT and get the optimal SNR with the right time-frequency resolution according to the signal characteristic under a fixed sampling rate. Computer simulations have verified the effectiveness of the new method.
基金supported by the National Natural Science Foundation of China(Grant No.52102436)the Fundamental Research Funds for the Central Universities(Grant No.30920021109)+3 种基金Natural Science Foundation of Jiangsu Province(BK20200496)China Postdoctoral Science Foundation(Grant No.2020M681615)the project of Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(Grant No.CJ202107)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(Grant No.MCMS-E-0221Y01)。
文摘Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly,a buffer structure was designed to attenuate the pyroshock generated by the pyrotechnic device.Secondly,the mechanical properties of aluminum honeycomb at different temperatures were obtained through quasi-static compression experiments.Then,the internal ballistic responses of the launcher were gained by the closed bomb tests and the equivalent classical interior ballistic model.Finally,the recoil performance of the launcher with aluminum honeycomb buffer at different temperatures was studied.It is revealed that the aluminum honeycomb crushing force gradually decreases with the temperature increases.The peak pressure,burning rate coefficient and velocity increase while the peak time decreases with the temperature increase for the interior ballistics.For the launcher recoil responses,the average launch recoil decreases if the aluminum honeycomb doesn't enter the dense stage.The impact acceleration,projectile velocity and displacement increase as the temperature increase.The paper spotlights the temperature's influence on the recoil characteristics of the aluminum honeycomb buffer,which provides a new idea for buffering technology of pyrotechnic devices in a complex space environment.