Previous research on deep-space networks based on delay-tolerant networking(DTN)has mainly focused on the performance of DTN protocols in simple networks;hence,research on complex networks is lacking.In this paper,we ...Previous research on deep-space networks based on delay-tolerant networking(DTN)has mainly focused on the performance of DTN protocols in simple networks;hence,research on complex networks is lacking.In this paper,we focus on network evaluation and protocol deployment for complex DTNbased deep-space networks and apply the results to a novel complex deep-space network based on the Universal Interplanetary Communication Network(UNICON-CDSN)proposed by the National Space Science Center(NSSC)for simulation and verification.A network evaluation method based on network capacity and memory analysis is proposed.Based on a performance comparison between the Licklider Transmission Protocol(LTP)and the Transmission Control Protocol(TCP)with the Bundle Protocol(BP)in various communication scenarios,a transport protocol configuration proposal is developed and used to construct an LTP deployment scheme for UNICON-CDSN.For the LTP deployment scheme,a theoretical model of file delivery time over complex deep-space networks is built.A network evaluation with the method proposed in this paper proves that UNICONCDSN satisfies the requirements for the 2020 Mars exploration mission Curiosity.Moreover,simulation results from a universal space communication network testbed(USCNT)designed by us show that the LTP deployment scheme is suitable for UNICON-CDSN.展开更多
基金supported by the Strategic leading project of the Chinese Academy of Sciences (Grant No. XDA15014603)。
文摘Previous research on deep-space networks based on delay-tolerant networking(DTN)has mainly focused on the performance of DTN protocols in simple networks;hence,research on complex networks is lacking.In this paper,we focus on network evaluation and protocol deployment for complex DTNbased deep-space networks and apply the results to a novel complex deep-space network based on the Universal Interplanetary Communication Network(UNICON-CDSN)proposed by the National Space Science Center(NSSC)for simulation and verification.A network evaluation method based on network capacity and memory analysis is proposed.Based on a performance comparison between the Licklider Transmission Protocol(LTP)and the Transmission Control Protocol(TCP)with the Bundle Protocol(BP)in various communication scenarios,a transport protocol configuration proposal is developed and used to construct an LTP deployment scheme for UNICON-CDSN.For the LTP deployment scheme,a theoretical model of file delivery time over complex deep-space networks is built.A network evaluation with the method proposed in this paper proves that UNICONCDSN satisfies the requirements for the 2020 Mars exploration mission Curiosity.Moreover,simulation results from a universal space communication network testbed(USCNT)designed by us show that the LTP deployment scheme is suitable for UNICON-CDSN.